Example(1-6):

Find all chains in the following groups and determine their length and type.

- $(Z_6, +_6)$;
- $(Z_8, +_8);$
- $(Z_{18}, +_{18})$ (**Homework**);
- $(Z_{21}, +_{21})$ (Homework).

Solution: The subgroups of a group $(Z_6, +_6)$ are :

$$H_1 = (Z_6, +_6)$$

$$H_2 = (\{0\}, +_6)$$

$$H_3 = (\langle 2 \rangle, +_6) = (\{0,2,4\}, +_6)$$

$$H_4 = (\langle 3 \rangle, +_6) = (\{0,3\}, +_6)$$

Then the chains in $(Z_6, +_6)$ are:

 $Z_6 \supset \{0\}$ is a trivial chain of length one

 $Z_6 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_6 \supset \langle 3 \rangle \supset \{0\}$ is a normal chain of length two.

The subgroups of a group $(Z_8, +_8)$ are :

$$H_1 = (Z_8, +_8)$$

$$H_2 = (\{0\}, +_8)$$

$$H_3 = (\langle 2 \rangle, +_8) = (\{0, 2, 4, 6\}, +_8)$$

$$H_4 = (\langle 4 \rangle, +_6) = (\{0,4\}, +_8)$$

Then the chains in $(Z_8, +_8)$ are:

 $Z_8 \supset \{0\}$ is a trivial chain of length one

 $Z_8 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_8 \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_8 \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length three.

Definition(1-7): (Composition Chain)

In the group (G,*), the descending sequence of sets

$$G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$$

forms a *composition chain* for (G,*) provided

- 1. $(H_i,*)$ is a subgroup of (G,*),
- 2. $(H_i,*)$ is a normal subgroup of $(H_{i-1},*)$,

3. The inclusion $H_{i-1} \supseteq K \supseteq H_i$, where (K,*) is a normal subgroup of $(H_{i-1},*)$, implies either $K = H_{i-1}$ or $K = H_i$.

Remark(1-8):

Every composition chain is a normal, but the converse is not true in general, the following example shows that.

Example(1-9):

In the group $(Z_{24}, +_{24})$, the normal chain

$$Z_{24} \supset \langle 2 \rangle \supset \langle 12 \rangle \supset \{0\}$$

is not a composition chain, since it may be further refined by inserting of the set $\langle 4 \rangle$ or $\langle 6 \rangle$. On other hand,

$$Z_{24} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \langle 8 \rangle \supset \{0\}$$

and

$$Z_{24} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

are both composition chains for $(Z_{24}, +_{24})$.