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1. The Jordan-Holder Theorem and Related Concepts.

Definition(1-1):

By a chain for a group (G,*) is meant any finite sequence

of subsets of

G=Hy>oH, >--DH, ;>H, ={e} descending
from G to {e} with the property that all the pairs (H;,*)

are subgroups of (G,*).

Remark(1-2):

The integer n is called the length of the chain. When n =
1, then the chain in definition (1-1) will called the

trivial.

Example(1-3):

Find all chains ina group (Z,4, +4).

Solution: The subgroups of a group (Z,, +,) are :

o Hy = (Z4,+4)
e H, = ({0}, +4)
o Hy = ((2),+4) = (10,2}, +4)
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The chains of a group (Z,, +,) are
Z, o {0} is a chain of length one
Z, D (2) D {0} is a chain of length two.

Example(1-4):

In the group (Z,,,+1,) of integers modulo 12, the

following chains are normal chains:
Z12 2 (6) 2 {0},
Z12 2 (2) 2 (4) = {0},
Z12 2 (3) 2 (6) {0},
Z12 2 (2) 2 (6) > {0}.

All subgroups are normal, since (Z,, +13) IS a

commutative group.

Definition(1-5): (Normal Chain)

If (H;,*) is a normal subgroup of a group (G,*) forall i =

1,...,n, then the chain 6 = Hy > H; > ---DH,_ 1 D H, =

{e} is called a normal chain.
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Example(1-6):

Find all chains in the following groups and determine their

length and type.

* (Zo, +e6);
* (Zg, +3g);
o (Zig, +15) (Homework);
o (Z51,+,1) (Homework).

Solution: The subgroups of a group (Zg, +¢) are :

Hi = (Zg, +6)
H; = ({0}, +6)
Hs = ((2), +6) = (10,2,4}, +¢)
Hy, = ((3), +6) = (10,3}, +¢)
Then the chains in (Z4, +¢) are:
Z¢ O {0} is a trivial chain of length one

Z¢ D (2) o {0} is a normal chain of length two

Ze D (3) 2 {0} is a normal chain of length two.




Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

The subgroups of a group (Zg, +g) are :
Hy = (Zg, +3s)
H, = ({0}, +5)
H; = ({2), +g) = ({0,2,4,6}, +35)
Hy = ((4), +6) = (10,4}, +5)
Then the chains in (Zg, +3) are:
Zg D {0} is a trivial chain of length one
Zg D (2) D {0} is a normal chain of length two
Zg D (4) D {0} is a normal chain of length two
Zg D (2) D (4) D {0} is a normal chain of length three.

Definition(1-7): (Composition Chain)

In the group (G,*), the descending sequence of sets
G=Hy,>oH > -D>H, ;> H,={e}
forms a composition chain for (G,*) provided

1. (H;,*) Is a subgroup of (G,*),

2. (H;,*) 1sa normal subgroup of (H;_q,*),
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3.The inclusion H;_; 2 K 2 H;, where (K,*) is a normal
subgroup of (H;_q,*), implies either K = H;_; or K =
H;.

Remark(1-8):

Every composition chain is a normal, but the converse is

not true in general, the following example shows that.

Example(1-9):

In the group (Z,4, +-4), the normal chain
Zy4 D (2) D (12) D {0}

IS not a composition chain, since it may be further refined

by inserting of the set(4) or (6). On other hand,
Zy4 2 (2) 2 (4) 2 (8) 2 {0}
and
Z4 2 (3) 2 (6) 2 (12) o {0}
are both composition chains for (Z,4, +,4).

Example(1-10):
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Find all chains in the following groups and determine their
length and type.

o (Zg, +3);

® (Z12,+12);
o (Zig, +15) (Homework).

Solution: The subgroups of a group (Zg, +g) are :

H, = (Zg, +3)

H; = ({0}, +5)

H; = ((2), +5) = (10,2,4,6}, +5)

Hy, = ((4), +5) = (10,4}, +3)

Then the chains in (Zg, +3g) are:

Zg O {0} is a trivial chain of length one.

Zg O (2) o {0} is a normal chain of length two, but it is not
composition chain, since there is a normal subgroup (4) in
Zg, such that (2) o (4).
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Zg D (4) o {0} is a normal chain of length two, but it is not
composition chain, since there is a normal subgroup (2) in
Zg, such that (2) o (4).

Zg D (2) D (4) D {0} is a composition chain of length

three.
The subgroups of a group (Z,5, +1,) are :
Hy = (Z13, +12)
H; = ({0}, +12)
H; = ((2), +12) = ({0,2,4,6,8,10}, +1,)
H, = ({3), +12) = ({0,3,6,9}, +12)
Hs = ({4), +12) = ({0,4,8}, +12)
He = ({6), +12) = ({0,6}, +12)
Then the chains in (Z,,, +1,) are:
Z1, D {0} is atrivial chain of length one.

Z1, D (2) D {0} is a normal chain of length two.

Z1, D (3) 2 {0} is a normal chain of length two.
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Z1, D (4) D {0} is a normal chain of length two.
Z1, D (6) D {0} is a normal chain of length two.

Z1, D (2) D (4) o {0} is a composition chain of length

three.

Z1, D (3) D (6) D {0} is a composition chain of length

three.

Example(1-11):

Let (G,*) be the group of symmetries of the square.

A normal chain for (G,*) which fails to be a composition
chain is
G D {R1g0, R360} 2 {R360}-

Example(1-12): (Homework)

Determine the following chain whether normal,

composition:

G O {Rgo, R180, R270, R360} 2 {R180, R360} 2 {R360}-
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Example(1-13):

The group (Z,+) has no a composition chain, since the
normal subgroups of (Z,+) are the cyclic subgroups
({(n)),+), n a nonnegative integer, Since the inclusion
(kn) € (n) holds for all k€ Z,, there always exists a

proper subgroup of any given group.

Definition(1-14):

A normal subgroup (H,*) is called a maximal normal
subgroup of the group (G,*) if H # G and there exists no
normal subgroup (K,*) of (G,*) suchthat H c K c G.

Example(1-15):

In the group (Z,4,+,4), the cyclic subgroups ((2), +,4)
and ((3), +,4) are both maximal normal with orders 12 and

8, respectively.

Example(1-16):

Determine the maximal normal subgroups in the group

(Z12, +12)-
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Solution: The normal subgroups of (Z,,, +15) are:

H, = ({2),+12) = ({0,2,4,6,8,10}, +15,)
H, = ({3),+12) = ({0,3,6,9}, +12)

H; = ({4), +12) = (10,4,8}, +12)

Hy = ({6), +12) = (10,6}, +12)

The maximal normal subgroups of (Z,,,+;,) are H, and
H,, since there is no normal subgroup in Z,, containing H;

and H,.

Remark(1-17):

A chain G=Hy,>H, >---DH, DH,={e} is a
composition of a group (G,*), if each normal subgroup
(H;,*) i1s a maximal normal subgroup of (H;_4,*), for all

i=1,..,n.

Example(1-18);

In the group (Z4,, +15) the chains Z,, D (2) D (4) o {0} is

a composition of Z,, , since

(2) i1s a maximal normal subgroup of Z,,,
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(4) is a maximal normal subgroup of (2),

{0} is a maximal normal subgroup of (4), and

Z1, D (3) D (6) D {0} is a composition of Z,,, since
(3) is a maximal normal subgroup of Z,,

(6) is a maximal normal subgroup of (3),

{0} is a maximal normal subgroup of (6).

Theorem(1-19):

A normal subgroup (H,*) of the group (G,*) is a maximal

If and only if the quotient (G/H ,&) Is asimple.
Proof:

=) Let K be a normal subgroup of G with H € K there
corresponds between (G/ y &) and (K / g &) such that

this correspondence is one-to-one. Hence, H is a maximal

normal in K = H is a maximal normal in G ( by

correspondence) = &/, is a simple.

<) let G/H be a simple
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= G/H has two normal subgroups which are e * H and
G _

[ butexH =H
Therefore H is a maximal m

Corollary(1-20):

The group (G/H ,®) is asimple, if |G/H| is a prime

number.

Examples(1-21):

1. Show that ((2), +,) is a maximal normal subgroup of

(Z12, +12)-
2. Show that ((3), +15) is @ maximal normal subgroup of

(Z15, +15). (Homework)

SOIUtion(l): (<2>; +12) = ({012141618)10}' +12)

G _ 6l _ 124 _ 12 _ : Zy3 . i
| /HI =T T2 6 2 1saprime = 2 Is a simple

(by Corollary (1-20)). From Theorem (1-19), we get that

(2) is a maximal normal subgroup of Z,,.

Corollary(1-22):
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Anormal chainG = Hy > Hy D+ D H,_; D H, ={e}is
a composition of a group (G,*), if (Hi/Hl__1 ,&) Is a simple
group foralli =1, ...,n

Example(1-23);

Show that Z,, 2 (3) 2 (6) D (12) > {0} is a composition
chain of a group (Zgg, +60)-

 [Zool _ 60 _ 3isa r|me=>
@) 20 P o

2 js a simple.

So, we get that (3) is a maximal normal subgroup of Z,.

& _ 20 _

(3)
=
6)| _ 10 2 Isa prime % >|sa3|mple

So, we get that (6) is a maximal normal subgroup of (3).

O — 29 = 2isa prime = 2 is a simple.

I{12)] 5 (12)
So, we get that (12) is a maximal normal subgroup of (6).

(12) .
{0}

(12)|

T Is a simple.

5
=I—5|sapr|me:>

So, we get that {0} is a maximal normal subgroup of (12).
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By corollaries (1-19) and (1-21), we have that Z,, 2 (3) D
(6) D (12) o {0} is a composition chain of a group
(Z60, t60)-

Theorem(1-24):

Every finite group (G,*) with more than one element has a

composition chain.

Theorem(1-25): (Jordan-Holder)

In a finite group (G,*) with more than one element, any two

composition chains are equivalent.

Example(1-26):

Ina group (Zgg, +60), Show that the two chains
Zeo 2 (3) 2 (6) 2 (12) > {0}
Zeo 2 (2) 2 (6) 2 (30) > {0},
are compositions and equivalent.

Solution:
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(/3 = (5@, since |“ot/ )| = F2= 3 =
|<2>/(6)‘ =
(<3>/<6>,®) = (Z6°/<2>,®), since \<3>/<6)\ =2=2=

|ZGO/<2)‘ - %

(<6>/<12>:®) = (<30>/{0};®), since I(6)/(12>‘ — 15—0 —
2= ‘<30>/{0}‘ =3

(<12>/{0}'®) = (9 30),@), since ‘<12>/{0}‘ =1

> = ‘<6>/<30>‘ =%

Therefore, by Jordan-Holder theorem the two chains
Zeo 2 (3) D (6) D (12) > {0}
Zeo D (2) D (6) D (30) o {0},

are compositions and equivalent.

Exercises(1-27):
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Check that the following chains represent composition
chains for the indicated group.

.For (Zs¢, +3¢), the group of integers modulo 36:
Z36 D (3) D (9) D (18) D {0}.

.For (G,,*), the group of symmetries of the square:
G 2 {R1g0, R360, D1, D2} 2 {R360, D1} 2 {R3e0}-
. For ({a),+), a cyclic group of order 30:

(a) o (a®) > (a') > {e}.

.For (83,0), the symmetric group on 3 symbols:

S, o {i,(123), (132)} o {i}.

Find a composition chain for the symmetric group
(S4,°)-

Prove that the cyclic subgroup ({(n),+) is a maximal
normal subgroup of (Z,+) if and only if n iIs a prime
number.

Establish that the following two composition chains for

(Z34, +3¢) are equivalent:
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Z,4 2 (3) 2 (6) D (12) o {0},
Z,4 D (2) D (4) D (12) o {0}.

e Find all composition chains for (Zs¢, +3¢).

e Find all composition chains for (Gg,*).

2. P- Groups and Related Concepts.

Definition(2-1): (p- Group)

A finite group (G,*) is said to be p- group if and only if the

order of each element of G is a power of fixed prime p.

Definition(2-2): (p- Group)
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A finite group (G,*) Is said to be p- group if and only if

|G| = p*, k € Z, where p is a prime number.

Example(2-3):

Show that (Z,4, +,) Is a p- group.

Solution: Z, = {0,1,2,3}and | Z,| = 4 = 22

= Z, 1S a 2- group, with

0(0) =1 = 2°,
o(1) = 4 = 22,
0(2) =2 =21,
0(3) = 4 = 22,

Example(2-4):

Determine whether (Zg, +¢) 1S @ p- group.

Solution: Z, = {0,1,2,3,4,5}and | Z¢| = 6 # P*

= Zg IS NOt p- group.

Example(2-5): (Homework)




Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

Determine whether (Gg,o) Is a p- group.

Examples(2-6):

e (Zg, +3g) is a 2- group, since |Zg| = 8 = 23,
e (Zo,+5) isa 3- group, since |Z¢| = 9 = 32,
e (Z,c, +,:) isa 5- group, since |Z,<| = 25 = 52.

Theorem(2-7):

Let HAG, then G is a p- group if and only if H and G/H are
p- groups.
Proof: (=) Assume that G is a p- group, to prove that H

and G/H are p- groups.

Since G is a p- group = o(a) = p*, for some x € Z*,Va €
G.

Since HES G = Va € H group = o(a) = p*, for some

x€EZT.

So, H i1s a p- group.

To prove G/H is a p- group.
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Let axH € G/H, to prove o(a * H) is a power of p.
(a*H)px=apx*H=e*H=H, (apx =e since G IS a
p- group= o(a) = p*)
(<) Suppose that H and G/H are p- groups, to prove G is a
p- group.
Let a € H, to prove o(a) is a power of p.
(@ H)?" =H..(1) (%, isap-group)
(a* H)P =aP «H ..(2)

From (1) and (2), we have a?” * H = H = a? € Hand H

IS a p- group,
= o(apx) =p,rezt

xX+r

xpr
:>(ap) —e=aP =e x+rezt

= o(a) = p**"

Therefore, G isa p- group m

Examples(2-8):
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Apply theorem(2-7) on (Z3,, +35).

Solution:

|Z3,| = 32 = 2° is a 2- group.
By theorem (2-7), H and G/H are 2- groups.

o(G) oy =O0H) =250< x<5.

o(H) =2%0r 2% or 22 or 23 or 2* or 2°,

o(H) = 2% is a 2- group = o(G/H) _0o(G) o(H) = i_z =

2° is a 2- group.

o(H) = 2t isa2-group = o(G) o(H) = 2%
o(H) = 2% isa 2- group = o(G) o(H) = 23
o(H) = 23 isa 2- group = o(G) o(H) = 22

o(H) = 2*isa2-group = o(G) =

o(H) = 2° isa 2- group = o(G) =
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Remark(2-9);

If G is a non-trivial p- group, then Cent(G) # e.

Theorem(2-10):

Every group of order p? is an abelian.

Proof: Let G be a group of order p?, to prove G is an

abelian.
Let Cent(G) is a subgroup of G.

G
By Lagrange Theorem (&) o(Cent(G) )’

2
P /o(Cent(G) )
= o(Cent(G)) = p® or p! or p?

If o(Cent(G)) =p’ = o(Cent(G)) = {e}, but this is

contradiction with remark(2-9), so o(Cent(G)) # p°.
If o(Cent(G)) = p? = 0(G) = Cent(G) = G

= ( IS an abelian.
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2

oo ©) =1 = 0 (o) =5

G . .
/Cent(G) is a cyclic.
Therefore, G is an abelian m

Remark(2-11):

The converse of theorem(2-10) is not true in general, for

example (Zg, +3g) is an abelian, but o((Zg) = 23 # pZ2.

Exercises(2-12):

e Let P and Q be two normal p-subgroups of a finite
group G. Show that PQ is a normal p-subgroup of G.

e Determine whether (Z,,5, +1,5) IS a p-group.

e Determine whether (Z,,1, +121) IS @ p-group.

e Determine whether (Z,4,+441) IS a p-group.

e Determine whether (Z4, +1¢) 1S @ p-group.

e Determine whether (Zg,5, +425) IS @ p-group.

e Determine whether (Z,g5, +1g5) IS @ p-group.

e Determine whether (Z,,g, +125) IS @ p-group.

e Determine whether (Z,54, +256) IS @ p-group.
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e Determine whether (Z,00, +100) IS @ p-group.

e Show that G, = {+1, i, +j, £k},-) is a p-group.

3.Sylow Theorem

Definition(3-1): (Sylow p- Subgroup)

Let (G,x) be a finite group and p is a prime number, a
subgroup (H,*) of a group G is called sylow p- subgroup if
1. (H,*) is a p- group,
2. (H,*) is not contained in any other p- subgroup of G

for the same prime number p.

Example(3-2):

Find sylow 2- subgroups and sylow 3- subgroup of the
group (Zz4, +24)-

Solution: The proper subgroups of the group (Z,4, +54)

are
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1.((2),+54) = 0({2)) =12 # P* = (2) is not
subgroup.

2.((3), +,,) = 0((3)) =8=23=(3) is a
subgroup.

3.((4), +,,) = 0({4)) = 6 # P = (4) is not
subgroup.

4.((6),+,,) = 0((6) =4=22=(6) is a
subgroup.

5.((8),4+,,) = 0((8))=3=31=(8) is a
subgroup.

6.((12), +54) = 0({(12)) =2 =21 = (12) is a
subgroup.

Theorem(3-3): (First Sylow Theorem)

p_

-

Let (G,*) be a finite group of order p*q, where p is a prime

number iIs not dividing q, then G has sylow p- subgroup of

order p*.

Example(3-4):

Find sylow 2- subgroup of the group (Z;,, +12).
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Solution: 0(Z;,) =12 = (4)(3) = (2%)(3),and 2 3

= by first sylow theorem, the group (Z,,, +,) has sylow

2- subgroup of order 22.

= ((3), +12) is a sylow 2- subgroup.

Example(3-5):

Find sylow 7- subgroup of the group (Z,,, +4,).

Solution: 0(Z4,) =42 = (7)(6),and 7 { 6

= by first sylow theorem, the group (Z,,, +4,) has sylow

7- subgroup of order 7%.
= ((6), +4,) 1S a sylow 7- subgroup.

Example(3-6):

Find sylow 3- subgroup of the group (Z,4, +,4).

Solution: 0(Z,,) =24 = (3)(8) = (3)(8),and 3 ¢ 8

= by first sylow theorem, the group (Z,4, +,4) has sylow

3- subgroup of order 3%.
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= ((8), +,4) Is a sylow 3- Subgroup.

Theorem(3-7):

Let p a prime number and G be a finite group such that
p*\o(G),x = 1, then G has a subgroup of order p* which is
called sylow p- subgroup of G.

Example(3-8):

Are the following groups (S3,0) and (Gg,o) have sylow p-

subgroups.

Solution:

(S3,0), 0(S3) = 6 = (2)(3),

2\ 6 =3 a subgroup H such that o(H) = 2 which is

called sylow 2- subgroup.

Also, 3\ 6 = 3 a subgroup K such that o(K) = 3 which

Is called sylow 3- subgroup.

(Gq,0), 0(Gg) = 23 is 2- subgroup.

Every subgroup of G, is 2- subgroup, o(H) = 2% or 21

or 2% or 23.
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Theorem(3-9): (Second Sylow Theorem)

The number of distinct sylow p-subgroups is k =1+
tp,t = 0,1, ... which is divide the order of G.

Example(3-10):

Find the distinct sylow p-subgroups of (Ss,0).
Solution:
0(S3) = 6 = (2)(3),

2\ 6 = 3 asubgroup H such that o(H) = 2.

The number of sylow 2-subgroups is k; =1+ 2t,t =
0,1,...and k; \ 6

ft=0=k;=1and 1\6
ft=1=k;=3and 3\6
ft=2=k;=5and 5t6
ft=3=k;=7and 71t6

so, there are two sylow 2-subgroups.

3\ 6 = 3 asubgroup K such that o(K) = 3.
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The number of sylow 3-subgroups is k, =1+ 3t,t =
0,1,...and k, \ 6

ft=0=k,=1and 1\6
ft=1=k,=4and 41t6
ft=2=k,=7and 746
So, there is one sylow 3-subgroup.

Example(3-11):

Find the number of sylow p-subgroups of G such that
o(G) = 12.

Solution: o(G) = 12 = (3)(2%)

3\ 12 = 3 a subgroup H such that o(H) = 3.

The number of sylow 3-subgroups is k; =1+ 3t,t =
0,1,...and k; \ 12

ft=0=k;=1and 1\ 12

ft=1=k;=4and 4\ 12

ft=2=k;=7and 7412
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Ift=3=k;=10and 10 } 12
So, there are two sylow 3-subgroups of G.

The number of sylow 2-subgroups is k, =1+ 2t,t =
0,1,..and k, \ 12

ft=0=k,=1and 1\ 12
ft=1=k,=3and3\ 12
ft=2=k,=5and 5412
ft=3=k,=7and 7 }t 12
So, there are two sylow 2-subgroups of G.

Remark(3-12):

The group G has exactly one sylow p-subgroup H if and
only if HAG.

Example(3-13):

(53,0),1‘1 — {fl = i!fZ = (123)'f3 — (132)}

HAG = H is a sylow 3-subgroup of Ss,

So, there is one sylow 3-subgroup of S5.
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Exercises(3-14):

e Show that there is no simple group of order 200.
e Show that there is no simple group of order 56.
e Show that there is no simple group of order 20.
e Show that whether (G,,) is a sylow.

4. Solvable Groups and Their Applications

Definition(4-1):

A group (G,*) is called a solvable group if and only if,
there is a finite collection of subgroups of (G,*),

H,, Hq, ..., H, such that
1.6 =Hy>H;>:-D>H,_; DH, ={e},
2.Hl'+1AHl' Vi = 0, e, L — 1,

H, . . .
: | mmutative gr vVi=0,..,n—1.
3 /Hi+1 S a commutative group Vi n

Example(4-2):

Show that, every commutative group is a solvable group.

Solution:
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Suppose that (G,*) is a commutative, to show that (G,*) is

a solvable.
Let G e HO and Hl e {e}

1G =HO DH]_ ={e}
2. H,AH, satisfies, since {e}AG, or ( every subgroup of

commutative group is a normal)

3. G/{e} = (7 IS a commutative group, or (the quotient of

commutative group is a commutative)
So, (G,*) is a solvable group,

Example(4-3):

Show that (S;,) is a solvable group.
Solution: let Hy,=S3,H,={fi=1if, =(123),f; =
(132)}, H, = {f1}

1.S3 = Hy, o H o H, = {e}

2. H,AH, satisfies, since { f;}A{f1, [, f3}, H{AH, IS true,
SInCe [53: Hl] =2 = H1A83

3.To prove H"/H, IS a commutative group Vi = 0,1

1+1
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H __o(Hy) 3 _ H :
o( 1/H2)_0(H:)_I_3<6: 1/H2 IS a

commutative group

HO _ O(Ho) _ E _ HO -
o( /Hl)—o(Hl)—3—2<6= /H1 is a
commutative group

Therefore, (S3,0) is a solvable group.

Example(4-4): (Homework)

Show that (Gg,°) is a solvable group.

Theorem(4-5):

Every subgroup of a solvable group is a solvable.

Proof: let (H,x) be a subgroup of (G,*) and (G,*) is a

solvable group.
To prove (H,*) Is a solvable.
Since G is a solvable =

there i1s a finite collection of subgroups of (G,*),
Gy, Gy, ..., G,, such that

1.6=06y>G; 22 Gyq1 2 Gy ={e},
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2.G; 1AG; Vi=0,..,n—1,

3. /Gl+1 is a commutative group Vi = 0, ...,n — 1.

L@tHi=HnGi, i=0,...,7’l
HO=HOGO,H1=HﬂG1,...,Hn=HﬂGn={e}
Each H; is a subgroup of (G,*).

1.6 =Hy>H,>:->H,_; > H, ={e}ishold
2'Hi+1AHi Vi = 0, v, L — 1, Hi =HnN Gi' Hi+1
Hn G;,.q,since G;;.1AG; = H; ,AH;

3.To prove /H » IS a commutative group Vi
l
0,..,n—1.
Let f;: H; — /Gl+1 =0,..,n— 1such that f;(x)

X * Gi+1‘v’x € Hi C Gi'
To prove f; Is a homomorphism,
file xy) = fi(x) ® fi(y) ?

filx*y) =x*xy* Gy = (X *Gi11) @ (¥ * Giyq) =
fi(x) ® fi(y)
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So, f; IS a homomorphism
f; iIsonto ?
Rr, = {fi(x):x € Hi} = {x * Giy1:x € Hi} = fi(H;)

i Gi/g.

1+1

fi(H;) € Gi/GiH = f; is not onto

Hi/kerfi = f.(H;) ( by theorem of homomorphism)

kerfy ={x € H;: fi(x) = e'} ={x € H;:x *x G;1.1 = G4}
= {.X' € Hl-:x (S Gi+1} — {x € Hl-:x eEHN Gi+1}

= Hiy
so, (/.. ®) = (FH).®)

G; G; i .
fi(H;) € l/Gi+1 and /. isacommutative

i+1

Hence, f;(H;) is a commutative

Therefore, H"/H, IS a commutative

1+1

So, (H,*) isasolvable m
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Theorem(4-6):

Let HAG and G is a solvable, then G/H IS a solvable.

Theorem(4-7):

Let HAG and both H, G/H are solvable, then (G,*) Is a

solvable.
Proof: since (H,*) is a solvable =

there is a finite collection of subgroups of (G,*),
H,, Hq, ..., H, such that

1.6 =Hy>H;>:->H,_; DH, ={e},
2.Hl'+1AHl' Vi = 0, e, L — 1,

H, . . .
. [ mmutative gr vVi=20,..,n—1.
3 /Hz+1 S a commutative group Vi n

Since (G/H,®) is a solvable =

there i1s a finite collection of subgroups of (G,*),

Go G

G
,—, ...,— such that
H H H
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G G G G
1._=_OD_1:.a-D_r={e}=H,
H H H H

2.G:1A% Vi=0..1r—1

Gi
H ; I y — —
3. /Gl.+1 IS a commutative group Vi =0, ..., r — 1.

H

To prove (G,*) is a solvable group.

G Gy C=c
—_—=— = =
H H 0

T—H=G ={e} or G, =H
HAG, > H < G, = G, = H

So, there is a finite collection Gy, Gq,...,G, =
H,, Hy, ..., H;, such that
1.6=6G,>26G,2+>2G.=H=Hy>H DD
H, = {e}.
2. Toprove G;,1AG; Vi=0,..,r—1
Letx € G; and a € G;,; toprove x*ax*x" 1 € Gjiq

€G el
X i —
' H
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Gitq

a€Gi,1=axHE 0

G G G
;_';1AHL=(x*H)®(a*H)®(x*H)‘1E ;1

Gi1

= (xxaxx 1)«HE = xxaxx 1€ Gy

= G;4+14AG6;
Gi - - .
3.To prove —— is a commutative group Vi =0,..,r —
i+1
1
Gi Gi . & .
H I H ~ _Tt (H~7
G, IS acommutative group and & — = " (g = K)
H H

G. . -
— - - IS a commutative group
i+1

Therefore, (G,*) Is a solvable group =

Exercises(4-8);

e Show that every p-group is a solvable group.
e Show that (S,,°) is a solvable group.

e Show that (Z,, +,) is a solvable group.

e Show that (Zg, +3) is a solvable group.
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Show that (Zs, +<) Is a solvable group.
Show that (Z¢, +¢) Is a solvable group.
Show that (Z;,, +15) is a solvable group.

Show that (Z,4, +54) is a solvable group.
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5 Some Applications of Group Theory
5.1 Cayley Theorem

Theorem(5-1-1): (Cayley Theorem)

Every group is an isomorphic to a group of permutations.

This means if (G,*) is any group, then (G,x) = (Fg,°),
where F, = {f,;a € G}, f;:G— G 3 f,(x) =a*x,Vx €
G.

Proof: define g: G — F; by g(a) = f,,Va € G
To prove g is a homomorphism, one to one and onto.

1. g is a homomorphism, leta,b € G

gla*b) = fop=faofo=9@eglb)=g Is a
homomaorphism.

2. g isaone toone, letg(a) = g(b), Va,b € G
=fo=fr=fi()=f(x) Sasx=bsx=a=bh

= g IS a one to one.

3.gisaonto, g(G) ={g(a):a € G} ={f:a€G}=F;
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Therefore, G = F;m

Corollary(5-1-2):

Every finite group (G,*) of order n is an isomorphic to
(Snfo)-

Example(5-1-3):

Consider the following Cayley table of a group (G =
{e,a,b,c}x)

* e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Show that(G,*) is an isomorphic to a subgroup of (S4,°).

Solution:

f=(eay o

(D)) = (1)
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N
hi=(s ¢ ¢

e a p
Cba

fo=(

R

J =5

e

3
4

3
1

4
5) = 1269
4

5) = (13)24)

) =G 23 D-anes

Hence, (G,*) is an isomorphic to the subgroup of (S,,°):

{(1),(12)(34), (13)(24), (14)(23)}.

Example(5-1-4): (Homework)

Let (G ={1,—-1,i,—i},;) be a group, apply Cayley

Theorem on G.

Example(5-1-5): (Homework)

Show that (Z3,+3) Is an isomorphic to a subgroup of

(53,0).

Exercises(5-1-6):

e Apply Cayley Theorem on (Z,, +,).

e Apply Cayley Theorem on (G = {+1, +i, +j, +k},").

e Apply Cayley Theoremon (G = {1, —1},").
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o Apply Cayley Theorem on (G ={A = ((1) (1))3 =

((1) —01)'C=(_01 —01)'D='(_01 (1))")'
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5.2 Direct Product

Definition(5-2-1):

Let (H,*) and (K,*) be two normal subgroups of (G,*),
then (G,*) is called an internal direct product of H and K (G
IS @ decomposition by H and K ) ifand only if G = H x K
and H N K = {e}.

Example(5-2-2):

Consider the following Cayley table of a group (G =

{e,a,b,c}*), a*> =b*=c*=¢e

* e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Let H ={e,a} and K = {e, b}, show that G = HQ K Is a
decomposition by H and K.

Solution: H, KAG since G Is a commutative group
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H+K ={e,a,b,c}and HNK = {e}
Hence, G = H @ K is decomposition by H and K.

Example(5-2-3):

Let (G,*) be any group with H = G and K = {e}, show that
G = H Q K is a decomposition by H and K.

Solution: H, KAG

HxK=Gx*{e}=0G
HNnK=Gn{e}={e}
Therefore, 6 = H @ K is a decomposition by H and K.

Example(5-2-4):

Let (Z,, +,) be agroup. Is Z, has a proper decomposition.

Solution: the subgroups of Z, are Z,,{0,2}, {0}

Let H=7Z, and K = {0,2}

H®,K=7,8,{02}= 7,

HnK = 7,n{0,2} ={0,2}
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So, Z, # Z, ® {0,2}

Let H = {0} and K = {0,2}

HR,K=K =+ Z,

Therefore, Z, has no proper decomposition.

Theorem(5-2-5):

Let H and K be two subgroups of G and G = H @ K, then
G/ =Kand G/, = H.

Proof:

SinceG=H®K=H+*K=Gand HNn K = {e}

G/H = H*K/H and H*K/H EK/HnK (by second

theorem of isomorphic)
G/ = K/{e} = G/, = K and
G/K:H*K/K and H*K/KEH/HnK

G/ = H/{e} = 0/, =Hm

Definition(5-2-6):
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Let (G4,*) and (G,,o) be two groups, define G; X G, =
{(a,b):a € G, beG,} such that (a,b)®(c,d) =
(a*xc,bod)>da,c€Gyb,deG, Then (Gy X G,,©®) IS
a group which is called an external direct product of G, and
G,.

Example(5-2-7): (Homework)

Show that (G, X G,, ®) is a group.

Example(5-2-8):

Let Gl - (Z3, +3) and GZ — (Zz, +2) Flnd Gl X Gz.

Solution:

Gy X G, = Z3 X I
={(0,0),(0,1), (1,0), (1,1),(2,0), (2,1)}

(1,1)O(2,1) = (0,0)

0(Z3; X Z,) = 0(Z3).0(Z,) = 6.

Theorem(5-2-9):
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Let (G,*) and (G,,°) be two groups, then

1. (G, X G,,®) Is an abelian if and only if both ¢; and
G, are abelian.

2.G1 X {e,} A Gy X G,.

3.{e;} X G, A G; X G,.

4.G; = G X {ey}.

5.G, = {e,} X G,.

Proof:

1. (=) suppose that G; X G, is an abelian, to prove

Giand G, are abelian.
Let (a,ey),(b,e;) € Gy X G, D a,b € Gy,e, € Gy
Since G, X G, is an abelian, then
(a,e;)O(b, e;) = (b,e;)O(a, e;)
(a*xb,e;) =(b*xa,e;) =>axb=b=xa

Hence, (G4,*) Is an abelian.

Similarly that (G,,*) is an abelian.
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(&) suppose that (G{,*) and (G,,0) are abelian, to prove

G, X G, Is an abelian.

Let (a,b),(c,d) € Gy X G,, to prove (a,b)®(c,d) =
(c,d)®(a, b)

(a,b)®(c,d) =(a*c,b*d)
(c,d)®(a,b) = (c xa,d * b)
a*c = c*a (Gqisan abelian)
bxd= dx*b (G,1s an abelian)
= (a,b)®(c,d) = (c,d)®(a, b)
Therefore, G; X G, is an abelian.
2. Toprove G; X {e,} A Gy X G,
G, X{e,} ={(a,e;):a€ G} +0
To prove (G, X {e,}, ®) is a subgroup of G; X G,
Let (a,e,), (b,e,) € Gy X {ey}

(a: eZ)G(bi 82)_1 = (Cl, eZ)G)(b_lleZ_l) — (a * b_erZ)

So, (G, X {e,}, ®) is a subgroup of G; X G,.
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To prove G; X {e;} A G X G,
Let (x,y) € G, X G, and (a,e,) € G; X {e,}
To prove (x,y)®O(a,e;)®(x,y)" 1 € G; X {e,}
(xxaxx"lLyxe*y ) =(xxaxx"!ey) € Gy X {e;}
Hence, G; X {e;} A G; X G,.

3. (Homework).

4.Toprove G; = Gy X {ey}.
Proof:
Define f: (G1,%) — (G X {e;},©) 3 f(a) = (a,e;)
fisamap ? let a;,a, €G; and a; = a, = (a,,e,) =
(az,e;) = f(ay) = f(ay), so f isamap

f is an one to one ? let f(a;) = f(ay) = (a,e;) =

(a,,e;) = a; = a,, SO f is aone to one.

f is a homomorphism ? f(axb)=(axb,ey) =
(a,e;)®(b,e,) = f(a)Of(b), so f is a homomorphism
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fisanonto ? Ry ={f(a):a € G} ={(a,e;):a €G}=
G, X {e,} so f is an onto.

Therefore, (G1,*) = (G X {e;,},®O) =
5. (Homework)

Theorem(5-2-10):

Let (G4,*) and (G,,°) be two p-groups, then (G; X G,, ®)

IS a p-group.

Proof:

Since G,is p-group = 0(G,) = p*1,k, € Z*
Since G,is p-group = 0(G,) = p*2,k, € Z*+

0(Gy X Gy) = 0(G,) X 0(G,) = p*1 x p*2
— pk1+k2,k1 + kz € Z+

Therefore, G; X G, IS ap-group m

Exercises(5-2-11):

o Llet H=1{0,2,4} and K ={0,3} are subgroups of

(Zg, +¢), showthat Z, = H @ K is a decomposition.
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Let H={0}, show that Z,=HQ®Z, IS
decomposition.

Find Z; X Z-.

Is S; X Z, an abelian?

Is Gg X Z, an abelian?

Is S5 X Gg an abelian?

Is {£1, +i} X Z, an abelian?
Is Z, X Zg a p-group?

Is Zc X Z,c a p-group?
IsZ{1 X Z15,1 a p-group?

IS Z; X Z,9 a p-group?
IsZ,, X Z3 a p-group?

IS Zc X 7,5 @ p-group?

IS Z, X Zg4 @ p-group?

IsZ, X 71,5 @ p-group?

Is Zg X Zg1 @ p-group?

Is Z,- X Zg1 @ p-group?

Is Z1,g X Zg @ p-group?

IS Z, X 7,56 @ p-group?

d




