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1. The Jordan-Holder Theorem and Related Concepts. 

Definition(1-1): 

By a chain for a group (𝐺,∗) is meant any finite sequence 

of subsets of  

𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒}  descending 

from  𝐺 to {𝑒} with the property that all the pairs (𝐻𝑖 ,∗) 

are  subgroups of (𝐺,∗). 

    Remark(1-2): 

    The integer 𝑛 is called the length of the chain. When 𝑛 =

1, then the         chain in  definition (1-1) will called the 

trivial. 

    Example(1-3): 

    Find all chains in a group (Ζ4, +4). 

 Solution: The subgroups of a group (Ζ4, +4) are : 

 𝐻1 = (Ζ4, +4) 

 𝐻2 = ({0}, +4) 

 𝐻3 = (〈2〉, +4) = ({0,2}, +4) 
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The chains of a group (Ζ4, +4) are 

Ζ4 ⊃ {0} is a chain of length one 

Ζ4 ⊃ 〈2〉 ⊃ {0} is a chain of length two. 

    Example(1-4): 

    In the group (Ζ12, +12) of integers modulo 12, the 

following chains are              normal chains: 

Ζ12 ⊃ 〈6〉 ⊃ {0}, 

Ζ12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0}, 

Ζ12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ {0}, 

Ζ12 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ {0}. 

    All subgroups are normal, since (Ζ12, +12) is a 

commutative group. 

Definition(1-5): (Normal Chain) 

If (𝐻𝑖 ,∗) is a normal subgroup of a group (𝐺,∗) for all 𝑖 =

1, … , 𝑛, then the chain 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 =

{𝑒} is called a normal chain. 
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Example(1-6): 

Find all chains in the following groups and determine their 

length and type. 

 (Ζ6, +6); 

 (Ζ8, +8); 

 (Ζ18, +18) (Homework); 

 (Ζ21, +21) (Homework). 

Solution: The subgroups of a group (Ζ6, +6) are : 

𝐻1 = (Ζ6, +6) 

𝐻2 = ({0}, +6) 

𝐻3 = (〈2〉, +6) = ({0,2,4}, +6) 

𝐻4 = (〈3〉, +6) = ({0,3}, +6) 

Then the chains in (Ζ6, +6) are: 

Ζ6 ⊃ {0} is a trivial chain of length one 

Ζ6 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two 

Ζ6 ⊃ 〈3〉 ⊃ {0} is a normal chain of length two. 
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The subgroups of a group (Ζ8, +8) are : 

𝐻1 = (Ζ8, +8) 

𝐻2 = ({0}, +8) 

𝐻3 = (〈2〉, +8) = ({0,2,4,6}, +8) 

𝐻4 = (〈4〉, +6) = ({0,4}, +8) 

Then the chains in (Ζ8, +8) are: 

Ζ8 ⊃ {0} is a trivial chain of length one 

Ζ8 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two 

Ζ8 ⊃ 〈4〉 ⊃ {0} is a normal chain of length two 

Ζ8 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is a normal chain of length three. 

    Definition(1-7): (Composition Chain) 

    In the group (𝐺,∗), the descending sequence of sets  

𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} 

   forms a composition chain for  (𝐺,∗) provided 

1. (𝐻𝑖 ,∗) is a  subgroup of (𝐺,∗), 

2. (𝐻𝑖 ,∗) is a normal  subgroup of (𝐻𝑖−1,∗), 
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3. The inclusion 𝐻𝑖−1 ⊇ 𝐾 ⊇ 𝐻𝑖 , where (𝐾,∗) is a normal 

subgroup of (𝐻𝑖−1,∗), implies either  𝐾 = 𝐻𝑖−1 or 𝐾 =

𝐻𝑖. 

Remark(1-8): 

Every composition chain is a normal, but the converse is 

not true in general, the following example shows that. 

Example(1-9): 

In the group (Ζ24, +24), the normal chain  

Ζ24 ⊃ 〈2〉 ⊃ 〈12〉 ⊃ {0} 

is not a composition chain, since it may be further refined 

by inserting of the set〈4〉 or 〈6〉. On other hand, 

Ζ24 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ 〈8〉 ⊃ {0} 

and  

Ζ24 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} 

are both composition chains for  (Ζ24, +24). 

Example(1-10): 
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Find all chains in the following groups and determine their 

length and type. 

 (Ζ8, +8); 

 (Ζ12, +12); 

 (Ζ18, +18) (Homework). 

Solution: The subgroups of a group (Ζ8, +8) are : 

𝐻1 = (Ζ8, +8) 

𝐻2 = ({0}, +8) 

𝐻3 = (〈2〉, +8) = ({0,2,4,6}, +8) 

𝐻4 = (〈4〉, +8) = ({0,4}, +8) 

Then the chains in (Ζ8, +8) are: 

Ζ8 ⊃ {0} is a trivial chain of length one. 

Ζ8 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two, but it is not 

composition chain, since there is a normal subgroup 〈4〉 in 

Ζ8, such that 〈2〉 ⊃ 〈4〉. 
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Ζ8 ⊃ 〈4〉 ⊃ {0} is a normal chain of length two, but it is not 

composition chain, since there is a normal subgroup 〈2〉 in 

Ζ8, such that 〈2〉 ⊃ 〈4〉. 

Ζ8 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is a composition chain of length 

three.  

The subgroups of a group (Ζ12, +12) are : 

𝐻1 = (Ζ12, +12) 

𝐻2 = ({0}, +12) 

𝐻3 = (〈2〉, +12) = ({0,2,4,6,8,10}, +12) 

𝐻4 = (〈3〉, +12) = ({0,3,6,9}, +12) 

𝐻5 = (〈4〉, +12) = ({0,4,8}, +12) 

𝐻6 = (〈6〉, +12) = ({0,6}, +12) 

Then the chains in (Ζ12, +12) are: 

Ζ12 ⊃ {0} is a trivial chain of length one. 

Ζ12 ⊃ 〈2〉 ⊃ {0} is a normal chain of length two. 

Ζ12 ⊃ 〈3〉 ⊃ {0} is a normal chain of length two. 
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Ζ12 ⊃ 〈4〉 ⊃ {0} is a normal chain of length two. 

Ζ12 ⊃ 〈6〉 ⊃ {0} is a normal chain of length two. 

Ζ12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is a composition chain of length 

three. 

Ζ12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ {0} is a composition chain of length 

three. 

Example(1-11): 

Let (𝐺,∗) be the group of symmetries of the square.  

A normal chain for (𝐺,∗) which fails to be a composition 

chain is  

𝐺 ⊃ {𝑅180, 𝑅360} ⊃ {𝑅360}. 

Example(1-12): (Homework) 

Determine the following chain whether normal, 

composition:  

𝐺 ⊃ {𝑅90, 𝑅180, 𝑅270, 𝑅360} ⊃ {𝑅180, 𝑅360} ⊃ {𝑅360}. 
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Example(1-13): 

  The group  (Ζ, +) has no a composition chain, since the 

normal subgroups of (Ζ, +) are the cyclic subgroups  

(〈n〉), +), n a nonnegative integer, Since the inclusion  

〈kn〉 ⊆ 〈𝑛〉 holds for all k ∈ Ζ+, there always exists a 

proper subgroup of any given group. 

Definition(1-14): 

A normal subgroup  (𝐻,∗) is called a maximal normal 

subgroup of the group (𝐺,∗) if 𝐻 ≠ 𝐺 and there exists no 

normal subgroup (𝐾,∗) of (𝐺,∗) such that 𝐻 ⊂ 𝐾 ⊂ 𝐺. 

Example(1-15): 

In the group (Ζ24, +24), the cyclic subgroups (〈2〉, +24) 

and (〈3〉, +24) are both maximal normal with orders 12 and 

8, respectively. 

Example(1-16):  

Determine the maximal normal subgroups in the group 

(Ζ12, +12). 
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Solution: The normal subgroups of (Ζ12, +12) are: 

𝐻1 = (〈2〉, +12) = ({0,2,4,6,8,10}, +12) 

𝐻2 = (〈3〉, +12) = ({0,3,6,9}, +12) 

𝐻3 = (〈4〉, +12) = ({0,4,8}, +12) 

𝐻4 = (〈6〉, +12) = ({0,6}, +12) 

The maximal normal subgroups of (Ζ12, +12) are 𝐻1 and 

𝐻2, since there is no normal subgroup in Ζ12 containing 𝐻1 

and 𝐻2. 

Remark(1-17): 

A chain 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} is a 

composition of a group (𝐺,∗), if each normal subgroup 

(𝐻𝑖 ,∗) is a maximal normal subgroup of (𝐻𝑖−1,∗), for all 

𝑖 = 1, … , 𝑛. 

Example(1-18); 

In the group (Ζ12, +12) the chains Ζ12 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ {0} is 

a composition of  Ζ12 , since 

 〈2〉 is a maximal normal subgroup of Ζ12,  
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 〈4〉 is a maximal normal subgroup of 〈2〉, 

{0} is a maximal normal subgroup of 〈4〉, and 

Ζ12 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ {0} is a composition of Ζ12, since 

〈3〉 is a maximal normal subgroup of Ζ12,  

 〈6〉 is a maximal normal subgroup of 〈3〉, 

{0} is a maximal normal subgroup of  〈6〉. 

Theorem(1-19): 

A normal subgroup (𝐻,∗) of the group (𝐺,∗) is a maximal 

if and only if the quotient (𝐺
𝐻⁄ ,⊗) is a simple. 

Proof: 

⇒) Let   𝐾 be a normal subgroup  of 𝐺 with 𝐻 ⊆ 𝐾 there 

corresponds between  (𝐺
𝐻⁄ ,⊗) and (𝐾

𝐻⁄ ,⊗) such that 

this correspondence is one-to-one. Hence, 𝐻 is a maximal 

normal in  𝐾 ⇒ 𝐻 is a maximal normal in 𝐺 ( by 

correspondence) ⇒ 𝐺 𝐻⁄  is a simple. 

⇐) let 𝐺 𝐻⁄   be a simple 
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 ⇒ 𝐺 𝐻⁄  has two normal subgroups which are 𝑒 ∗ 𝐻 and 

𝐺
𝐻⁄ , but 𝑒 ∗ 𝐻 = 𝐻 

Therefore 𝐻 is a maximal ∎ 

Corollary(1-20): 

The group (𝐺
𝐻⁄ ,⊗) is a simple,  if  |𝐺 𝐻⁄ | is a prime 

number. 

Examples(1-21); 

1. Show that (〈2〉, +12) is a maximal normal subgroup of 

(Ζ12, +12). 

2. Show that (〈3〉, +15) is a maximal normal subgroup of 

(Ζ15, +15). (Homework) 

Solution(1): (〈2〉, +12) = ({0,2,4,6,8,10}, +12) 

|𝐺 𝐻⁄ | =
|𝐺|

|𝐻|
=

|Ζ12|

|〈2〉|
=

12

6
= 2 is a prime ⇒

Ζ12

〈2〉
 is a simple 

(by Corollary (1-20)). From Theorem (1-19), we get that 

〈2〉 is a maximal normal subgroup of   Ζ12. 

Corollary(1-22): 
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A normal chain 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} is 

a composition of a group (𝐺,∗), if (
𝐻𝑖

𝐻𝑖−1
⁄ ,⊗) is a simple 

group for all 𝑖 = 1, … , 𝑛. 

Example(1-23); 

Show that Ζ60 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} is a composition 

chain of a group (Ζ60, +60). 

Solution: 
|Ζ60|

|〈3〉|
=

60

20
= 3 is a prime ⇒

Ζ60

〈3〉
 is a simple.  

So, we get that 〈3〉 is a maximal normal subgroup of   Ζ60. 

|〈3〉|

|〈6〉|
=

20

10
= 2 is a prime ⇒

〈3〉

〈6〉
 is a simple.  

So, we get that 〈6〉 is a maximal normal subgroup of 〈3〉. 

|〈6〉|

|〈12〉|
=

10

5
= 2 is a prime ⇒

〈6〉

〈12〉
 is a simple.  

So, we get that 〈12〉 is a maximal normal subgroup of 〈6〉. 

|〈12〉|

|{0}|
=

5

1
= 5 is a prime ⇒

〈12〉

{0}
 is a simple.  

So, we get that {0} is a maximal normal subgroup of 〈12〉. 
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By corollaries (1-19) and (1-21), we have that Ζ60 ⊃ 〈3〉 ⊃

〈6〉 ⊃ 〈12〉 ⊃ {0} is a composition chain of a group 

(Ζ60, +60). 

Theorem(1-24):  

Every finite group (𝐺,∗) with more than one element has a 

composition chain. 

Theorem(1-25): (Jordan-Holder) 

In a finite group (𝐺,∗) with more than one element, any two 

composition chains are equivalent. 

Example(1-26):  

In a group (Ζ60, +60), show that the two chains 

Ζ60 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} 

Ζ60 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ 〈30〉 ⊃ {0}, 

are compositions and equivalent. 

Solution:  
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(
Ζ60

〈3〉⁄ ,⊗) ≅ (
〈2〉

〈6〉⁄ ,⊗), since |
Ζ60

〈3〉⁄ | =
60

20
= 3 =

|
〈2〉

〈6〉⁄ | =
30

10
, 

(
〈3〉

〈6〉⁄ ,⊗) ≅ (
Ζ60

〈2〉⁄ ,⊗), since |
〈3〉

〈6〉⁄ | =
20

10
= 2 =

|
Ζ60

〈2〉⁄ | =
60

30
, 

(
〈6〉

〈12〉⁄ ,⊗) ≅ (
〈30〉

{0}⁄ ,⊗), since |
〈6〉

〈12〉⁄ | =
10

5
=

2 = |
〈30〉

{0}⁄ | =
2

1
, 

(
〈12〉

{0}⁄ ,⊗) ≅ (
〈6〉

〈30〉⁄ ,⊗), since |
〈12〉

{0}⁄ | =
5

1
=

5 = |
〈6〉

〈30〉⁄ | =
10

2
. 

Therefore, by Jordan-Holder theorem the two chains  

Ζ60 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0} 

Ζ60 ⊃ 〈2〉 ⊃ 〈6〉 ⊃ 〈30〉 ⊃ {0}, 

are compositions and equivalent. 

Exercises(1-27): 



Prof. Dr. Najm Al-Seraji, Applications of  Group Theory, 2023 
 

 

 17 

 Check that the following chains represent composition 

chains for the indicated group. 

a. For (Ζ36, +36), the group of integers modulo 36: 

Ζ36 ⊃ 〈3〉 ⊃ 〈9〉 ⊃ 〈18〉 ⊃ {0}. 

b. For (𝐺𝑠 ,∗), the group of symmetries of the square: 

𝐺 ⊃ {𝑅180, 𝑅360, 𝐷1, 𝐷2} ⊃ {𝑅360, 𝐷1} ⊃ {𝑅360}. 

c. For (〈𝑎〉,∗), a cyclic group of order 30: 

〈𝑎〉 ⊃ 〈𝑎5〉 ⊃ 〈𝑎10〉 ⊃ {𝑒}. 

d. For (𝑆3,∘), the symmetric group on 3 symbols: 

𝑆3 ⊃ {𝑖, (123), (132)} ⊃ {𝑖}. 

 Find a composition chain for the symmetric group  

(𝑆4,∘). 

 Prove that the cyclic subgroup (〈𝑛〉, +) is a maximal 

normal subgroup of (Ζ, +) if and only if 𝑛 is a prime 

number. 

 Establish that the following two composition chains for 

(Ζ36, +36) are equivalent: 
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Ζ24 ⊃ 〈3〉 ⊃ 〈6〉 ⊃ 〈12〉 ⊃ {0}, 

Ζ24 ⊃ 〈2〉 ⊃ 〈4〉 ⊃ 〈12〉 ⊃ {0}. 

 Find all composition chains for (Ζ36, +36). 

 Find all composition chains for (𝐺𝑠 ,∗). 

 

 

 

 

 

 

2. 𝐏- Groups and Related Concepts. 

Definition(2-1): (𝐩- Group) 

A finite group (𝐺,∗) is said to be 𝑝- group  if and only if the 

order of each element of  𝐺 is a power of fixed prime 𝑝. 

Definition(2-2): (𝐩- Group) 
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 A finite group (𝐺,∗) is said to be 𝑝- group  if and only if  

|𝐺| = 𝑝𝑘 , 𝑘 ∈ Ζ, where 𝑝 is a prime number. 

Example(2-3):  

Show that (Ζ4, +4) is a p- group. 

Solution:  Ζ4 = {0,1,2,3} and |  Ζ4| = 4 = 22  

⇒  Ζ4 is a 2- group, with 

o(0) = 1 = 20, 

o(1) = 4 = 22, 

o(2) = 2 = 21, 

o(3) = 4 = 22. 

 

Example(2-4):  

Determine whether (Ζ6, +6) is a p- group. 

Solution:  Ζ6 = {0,1,2,3,4,5} and |  Ζ6| = 6 ≠ 𝑃𝑘  

⇒  Ζ6 is not p- group. 

Example(2-5): (Homework) 
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Determine whether (G𝑠,∘) is a p- group. 

Examples(2-6): 

 (Ζ8, +8) is a 2- group, since |Ζ8| = 8 = 23, 

 (Ζ9, +9) is a 3- group, since |Ζ9| = 9 = 32, 

 (Ζ25, +25) is a 5- group, since |Ζ25| = 25 = 52. 

Theorem(2-7):  

Let H∆G, then G is a p- group if and only if  H and G 𝐻⁄  are 

p- groups. 

Proof:   (⟹)  Assume that G is a p- group, to prove that H 

and G 𝐻⁄  are p- groups. 

Since G is a p- group ⟹ o(a) = p𝑥, for some x ∈ Ζ+, ∀𝑎 ∈

𝐺. 

Since H ⊆ G ⟹ ∀𝑎 ∈ 𝐻 group ⟹ o(a) = p𝑥, for some 

x ∈ Ζ+. 

So, H is a p- group. 

To prove G 𝐻⁄  is a p- group. 
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Let  𝑎 ∗ 𝐻 ∈ G
𝐻⁄ , to prove 𝑜(𝑎 ∗ 𝐻) is a power of p. 

(𝑎 ∗ 𝐻)p𝑥
= 𝑎p𝑥

∗ 𝐻 = 𝑒 ∗ 𝐻 = 𝐻, (𝑎p𝑥
= 𝑒 since G is a 

p- group⟹ o(a) = p𝑥 ) 

(⟸) Suppose that H and G 𝐻⁄  are p- groups, to prove G is a 

p- group. 

Let 𝑎 ∈ 𝐻, to prove 𝑜(𝑎) is a power of p. 

(𝑎 ∗ 𝐻)p𝑥
= 𝐻 … (1)  (G 𝐻⁄  is a p- group) 

(𝑎 ∗ 𝐻)p𝑥
= 𝑎p𝑥

∗ 𝐻 … (2) 

From (1) and (2), we have 𝑎p𝑥
∗ 𝐻 = 𝐻 ⟹ 𝑎p𝑥

∈ 𝐻 and 𝐻 

is a p- group, 

⟹ 𝑜(𝑎p𝑥
) = p𝑟 , 𝑟 ∈ Ζ+ 

⟹ (𝑎p𝑥
)

p𝑟

= 𝑒 ⟹ 𝑎p𝑥+𝑟
= 𝑒, 𝑥 + 𝑟 ∈ Ζ+, 

⟹ 𝑜(𝑎) = p𝑥+𝑟  

Therefore, G is a p- group ∎  

Examples(2-8):  
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Apply theorem(2-7) on (Ζ32, +32). 

Solution:  

|Ζ32| = 32 = 25 is a 2- group. 

By theorem (2-7), H and G 𝐻⁄  are 2- groups. 

o(G)
𝑜(𝐻)⁄    ⟹ 𝑜(𝐻) = 2𝑥 , 0 ≤  𝑥 ≤ 5. 

𝑜(𝐻) = 20 or    21  or  22  or   23   or   24   or   25, 

𝑜(𝐻) = 20 is a 2- group ⟹ 𝑜(G
𝐻⁄ ) = o(G)

𝑜(𝐻)⁄ =
25

20 =

25 is a 2- group. 

𝑜(𝐻) = 21 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 24 

𝑜(𝐻) = 22 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 23 

𝑜(𝐻) = 23 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 22 

𝑜(𝐻) = 24 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 2 

𝑜(𝐻) = 25 is a 2- group ⟹ o(G)
𝑜(𝐻)⁄ = 1. 
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Remark(2-9);  

If G is a non-trivial  p- group, then Cent(G) ≠ 𝑒. 

Theorem(2-10):  

Every group of order p2 is an abelian. 

Proof: Let G be a group of order p2, to prove G is an 

abelian. 

Let Cent(G) is a subgroup of G. 

By Lagrange Theorem 
o(G)

𝑜(Cent(G) )⁄  , 

⟹
p2

𝑜(Cent(G) )
⁄  

⟹ 𝑜(Cent(G)) = p0   or   p1   or    p2 

If  𝑜(Cent(G)) = p0 ⟹ 𝑜(Cent(G)) = {𝑒}, but this is 

contradiction with remark(2-9), so 𝑜(Cent(G)) ≠ p0. 

If 𝑜(Cent(G)) = p2 = 𝑜(𝐺) ⟹ Cent(G) = 𝐺 

⟹ 𝐺 is an abelian. 
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If 𝑜(Cent(G)) = p1 ⟹ 𝑜 (𝐺
Cent(G)⁄ ) =

p2

p1 = p  

𝐺
Cent(G)⁄  is a cyclic. 

Therefore, 𝐺 is an abelian ∎ 

Remark(2-11):  

The converse of theorem(2-10) is not true in general, for 

example  (Ζ8, +8) is an abelian, but 𝑜((Ζ8) = 23 ≠ 𝑝2. 

Exercises(2-12): 

 Let 𝑃 and 𝑄 be two normal p-subgroups of a finite 

group 𝐺. Show that 𝑃𝑄 is a normal p-subgroup of 𝐺. 

 Determine whether (Ζ125, +125) is a p-group. 

 Determine whether (Ζ121, +121) is a p-group. 

 Determine whether (Ζ41, +41) is a p-group. 

 Determine whether (Ζ16, +16) is a p-group. 

 Determine whether (Ζ625, +625) is a p-group. 

 Determine whether (Ζ185, +185) is a p-group. 

 Determine whether (Ζ128, +128) is a p-group. 

 Determine whether (Ζ256, +256) is a p-group. 
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 Determine whether (Ζ100, +100) is a p-group. 

 Show that Gℓ = {±1, ±𝑖, ±𝑗, ±𝑘},∙) is a p-group. 

 

 

3. Sylow Theorem 

Definition(3-1): (Sylow 𝒑- Subgroup) 

Let (𝐺,∗) be a finite group and p is a prime number, a 

subgroup (𝐻,∗) of a group 𝐺 is called sylow 𝑝- subgroup if  

1. (𝐻,∗) is a p- group, 

2. (𝐻,∗) is not contained in any other p- subgroup of 𝐺 

for the same prime number p. 

Example(3-2);  

Find sylow 2- subgroups and sylow 3- subgroup of the 

group (Ζ24, +24). 

Solution: The proper subgroups of  the group (Ζ24, +24) 

are 
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1. (〈2〉, +24) ⟹ 𝑜(〈2〉) = 12 ≠ 𝑃𝑘 ⟹ 〈2〉 is not p- 

subgroup. 

2. (〈3〉, +24) ⟹ 𝑜(〈3〉) = 8 = 23 ⟹ 〈3〉 is a 2- 

subgroup. 

3. (〈4〉, +24) ⟹ 𝑜(〈4〉) = 6 ≠ 𝑃𝑘 ⟹ 〈4〉 is not p- 

subgroup. 

4. (〈6〉, +24) ⟹ 𝑜(〈6〉) = 4 = 22 ⟹ 〈6〉 is a 2- 

subgroup. 

5. (〈8〉, +24) ⟹ 𝑜(〈8〉) = 3 = 31 ⟹ 〈8〉 is a 3- 

subgroup. 

6. (〈12〉, +24) ⟹ 𝑜(〈12〉) = 2 = 21 ⟹ 〈12〉 is a 2- 

subgroup. 

Theorem(3-3): (First Sylow Theorem) 

Let (𝐺,∗) be a finite group of order p𝑘𝑞, where p is a prime 

number is not dividing q, then 𝐺 has sylow p- subgroup of 

order p𝑘. 

Example(3-4): 

Find sylow 2- subgroup of the group (Ζ12, +12). 
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Solution: 𝑜(Ζ12) = 12 = (4)(3) = (22)(3), and 2 ∤ 3 

⟹ by first sylow theorem, the group (Ζ12, +12) has sylow 

2- subgroup of order  22. 

⟹ (〈3〉, +12) is a sylow 2- subgroup. 

 

Example(3-5): 

Find sylow 7- subgroup of the group (Ζ42, +42). 

Solution: 𝑜(Ζ42) = 42 = (7)(6), and 7 ∤ 6 

⟹ by first sylow theorem, the group (Ζ42, +42) has sylow 

7- subgroup of order  71. 

⟹ (〈6〉, +42) is a sylow 7- subgroup. 

Example(3-6): 

Find sylow 3- subgroup of the group (Ζ24, +24). 

Solution: 𝑜(Ζ24) = 24 = (3)(8) = (31)(8), and 3 ∤ 8 

⟹ by first sylow theorem, the group (Ζ24, +24) has sylow 

3- subgroup of order  31. 
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⟹ (〈8〉, +24) is a sylow 3- Subgroup. 

Theorem(3-7): 

Let p a prime number and G be a finite group such that 

p𝑥\o(𝐺), 𝑥 ≥ 1, then G has a subgroup of order p𝑥 which is 

called sylow p- subgroup of G. 

Example(3-8): 

Are the following groups (S3,∘) and (G𝑠,∘) have sylow p- 

subgroups. 

Solution: 

 (S3,∘), 𝑂(S3) = 6 = (2)(3),  

2 ∖ 6 ⟹ ∃ a subgroup 𝐻 such that 𝑜(𝐻) = 2 which is 

called sylow 2- subgroup. 

Also, 3 ∖ 6 ⟹ ∃ a subgroup 𝐾 such that 𝑜(𝐾) = 3 which 

is called sylow 3- subgroup. 

(G𝑠,∘), 𝑜(G𝑠) = 23 is 2- subgroup. 

Every subgroup of G𝑠 is 2- subgroup, 𝑜(𝐻) = 20  or   21   

or   22  or  23 . 
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Theorem(3-9): (Second Sylow Theorem) 

The number of distinct sylow p-subgroups is  𝑘 = 1 +

𝑡𝑝, 𝑡 = 0,1, … which is divide the order of 𝐺. 

Example(3-10): 

Find the distinct sylow  p-subgroups of (S3,∘). 

Solution:  

𝑜(S3) = 6 = (2)(3),  

2 ∖ 6 ⟹ ∃ a subgroup 𝐻 such that 𝑜(𝐻) = 2. 

The number of sylow  2-subgroups is 𝑘1 = 1 + 2𝑡, 𝑡 =

0,1, … and 𝑘1 ∖ 6 

if 𝑡 = 0 ⟹ 𝑘1 = 1 and  1 ∖ 6 

if 𝑡 = 1 ⟹ 𝑘1 = 3 and  3 ∖ 6 

if 𝑡 = 2 ⟹ 𝑘1 = 5 and  5 ∤ 6 

if 𝑡 = 3 ⟹ 𝑘1 = 7 and  7 ∤ 6 

so, there are  two sylow 2-subgroups. 

3 ∖ 6 ⟹ ∃ a subgroup 𝐾 such that 𝑜(𝐾) = 3. 



Prof. Dr. Najm Al-Seraji, Applications of  Group Theory, 2023 
 

 

 30 

The number of sylow  3-subgroups is 𝑘2 = 1 + 3𝑡, 𝑡 =

0,1, … and 𝑘2 ∖ 6 

if 𝑡 = 0 ⟹ 𝑘2 = 1 and  1 ∖ 6 

if 𝑡 = 1 ⟹ 𝑘2 = 4 and  4 ∤ 6 

if 𝑡 = 2 ⟹ 𝑘2 = 7 and  7 ∤ 6 

So, there is  one sylow 3-subgroup. 

Example(3-11): 

Find the number of sylow p-subgroups of G such that 

o(G) = 12. 

Solution: o(G) = 12 = (3)(22) 

3 ∖ 12 ⟹ ∃ a subgroup 𝐻 such that 𝑜(𝐻) = 3. 

The number of sylow  3-subgroups is 𝑘1 = 1 + 3𝑡, 𝑡 =

0,1, … and 𝑘1 ∖ 12 

if 𝑡 = 0 ⟹ 𝑘1 = 1 and  1 ∖ 12 

if 𝑡 = 1 ⟹ 𝑘1 = 4 and  4 ∖ 12 

if 𝑡 = 2 ⟹ 𝑘1 = 7 and  7 ∤ 12 
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if 𝑡 = 3 ⟹ 𝑘1 = 10 and 10 ∤ 12 

So, there are two sylow 3-subgroups of G. 

The number of sylow  2-subgroups is 𝑘2 = 1 + 2𝑡, 𝑡 =

0,1, … and 𝑘2 ∖ 12 

if 𝑡 = 0 ⟹ 𝑘2 = 1 and  1 ∖ 12 

if 𝑡 = 1 ⟹ 𝑘2 = 3 and 3 ∖ 12 

if 𝑡 = 2 ⟹ 𝑘2 = 5 and  5 ∤ 12 

if 𝑡 = 3 ⟹ 𝑘2 = 7 and 7 ∤ 12 

So, there are  two sylow 2-subgroups of G. 

Remark(3-12): 

The group G has exactly one sylow p-subgroup  H if and 

only if H∆𝐺. 

Example(3-13): 

(S3,∘), H = {𝑓1 = 𝑖, 𝑓2 = (123), 𝑓3 = (132)} 

H∆𝐺 ⟹ H is a sylow 3-subgroup of S3, 

So, there is  one sylow 3-subgroup of S3. 
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Exercises(3-14); 

 Show that there is no simple group of order 200. 

 Show that there is no simple group of order 56. 

 Show that there is no simple group of order 20. 

 Show that whether (Gℓ,∙) is a sylow. 

4. Solvable Groups and Their Applications 

Definition(4-1):  

A group (𝐺,∗) is called a solvable group if and only if, 

there is a finite collection of subgroups of (𝐺,∗), 

𝐻0, 𝐻1, … , 𝐻𝑛  such that 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒}, 

2. 𝐻𝑖+1∆𝐻𝑖    ∀𝑖 = 0, … , 𝑛 − 1, 

3. 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 = 0, … , 𝑛 − 1. 

Example(4-2): 

Show that, every commutative group is a solvable group.  

Solution:  
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Suppose that (𝐺,∗) is a commutative, to show that (𝐺,∗) is 

a solvable. 

Let 𝐺 = 𝐻0 and 𝐻1 = {𝑒} 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 = {𝑒} 

2. 𝐻1∆𝐻0 satisfies, since {𝑒}∆𝐺, or ( every subgroup of 

commutative group is a normal) 

3. 𝐺 {𝑒}⁄ ≅ 𝐺 is a commutative group, or (the quotient of 

commutative group is a commutative) 

So, (𝐺,∗) is a solvable group, 

Example(4-3): 

Show that (S3,∘) is a solvable group. 

Solution: let 𝐻0 = S3, H1 = {𝑓1 = 𝑖, 𝑓2 = (123), 𝑓3 =

(132)}, 𝐻2 = {𝑓1} 

1. S3 = 𝐻0 ⊃ H1 ⊃ H2 = {𝑒} 

2. 𝐻2∆𝐻1 satisfies, since { 𝑓1}∆{𝑓1, 𝑓2, 𝑓3}, 𝐻1∆𝐻0 is true, 

since [S3: 𝐻1] = 2 ⟹ 𝐻1∆S3 

3. To prove 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 = 0,1 
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    𝑜 (
𝐻1

𝐻2
⁄ ) =

𝑜(H1)

𝑜(H2)
=

3

1
= 3 < 6 ⟹

𝐻1
𝐻2

⁄  is a 

commutative group 

    𝑜 (
𝐻0

𝐻1
⁄ ) =

𝑜(H0)

𝑜(H1)
=

6

3
= 2 < 6 ⟹

𝐻0
𝐻1

⁄  is a 

commutative group 

Therefore, (S3,∘) is a solvable group. 

Example(4-4): (Homework) 

Show that (G𝑠,∘) is a solvable group. 

Theorem(4-5): 

Every subgroup of a solvable group is a solvable. 

Proof: let (𝐻,∗) be a subgroup of (𝐺,∗) and (𝐺,∗) is a 

solvable group. 

To prove (𝐻,∗) is a solvable. 

Since 𝐺 is a solvable ⟹  

there is a finite collection of subgroups of (𝐺,∗), 

𝐺0, 𝐺1, … , 𝐺𝑛   such that 

1. 𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ ⋯ ⊃ 𝐺𝑛−1 ⊃ 𝐺𝑛 = {𝑒}, 
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2. 𝐺𝑖+1∆𝐺𝑖    ∀𝑖 = 0, … , 𝑛 − 1, 

3. 
𝐺𝑖

𝐺𝑖+1
⁄  is a commutative group ∀𝑖 = 0, … , 𝑛 − 1. 

Let 𝐻𝑖 = 𝐻 ∩ 𝐺𝑖 ,   𝑖 = 0, … , 𝑛 

𝐻0 = 𝐻 ∩ 𝐺0, 𝐻1 = 𝐻 ∩ 𝐺1, … , 𝐻𝑛 = 𝐻 ∩ 𝐺𝑛 = {𝑒}  

Each 𝐻𝑖 is a subgroup of (𝐺,∗). 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒} is hold 

2. 𝐻𝑖+1∆𝐻𝑖    ∀𝑖 = 0, … , 𝑛 − 1,   𝐻𝑖 = 𝐻 ∩  𝐺𝑖, 𝐻𝑖+1 =

𝐻 ∩  𝐺𝑖+1 , since 𝐺𝑖+1∆𝐺𝑖 ⟹ 𝐻𝑖+1∆𝐻𝑖 

3. To prove 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 =

0, … , 𝑛 − 1. 

Let 𝑓𝑖: 𝐻𝑖 ⟶
𝐺𝑖

𝐺𝑖+1
⁄ , 𝑖 = 0, … , 𝑛 − 1 such that 𝑓𝑖(𝑥) =

𝑥 ∗ 𝐺𝑖+1∀𝑥 ∈ 𝐻𝑖 ⊆ 𝐺𝑖. 

To prove 𝑓𝑖 is a homomorphism, 

𝑓𝑖(𝑥 ∗ 𝑦) = 𝑓𝑖(𝑥) ⊗ 𝑓𝑖(𝑦) ? 

𝑓𝑖(𝑥 ∗ 𝑦) = 𝑥 ∗ 𝑦 ∗ 𝐺𝑖+1 = (𝑥 ∗ 𝐺𝑖+1) ⊗ (𝑦 ∗ 𝐺𝑖+1) =

𝑓𝑖(𝑥) ⊗ 𝑓𝑖(𝑦)  
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So, 𝑓𝑖 is a homomorphism 

𝑓𝑖 is onto ? 

𝑅𝑓𝑖
= {𝑓𝑖(𝑥): 𝑥 ∈ 𝐻𝑖} = {𝑥 ∗ 𝐺𝑖+1: 𝑥 ∈ 𝐻𝑖} = 𝑓𝑖(𝐻𝑖)

≠
𝐺𝑖

𝐺𝑖+1
⁄   

𝑓𝑖(𝐻𝑖) ⊆
𝐺𝑖

𝐺𝑖+1
⁄ ⟹ 𝑓𝑖 is not onto 

𝐻𝑖
ker𝑓𝑖 

⁄ ≅ 𝑓𝑖(𝐻𝑖)  ( by theorem of homomorphism) 

ker𝑓𝑖 = {𝑥 ∈ 𝐻𝑖 : 𝑓𝑖(𝑥) = 𝑒′} = {𝑥 ∈ 𝐻𝑖: 𝑥 ∗ 𝐺𝑖+1 = 𝐺𝑖+1}

= {𝑥 ∈ 𝐻𝑖: 𝑥 ∈ 𝐺𝑖+1} = {𝑥 ∈ 𝐻𝑖 : 𝑥 ∈ 𝐻 ∩ 𝐺𝑖+1}

=  𝐻𝑖+1 

so, (
𝐻𝑖

𝐻𝑖+1
⁄ ,⊗) ≅ (𝑓𝑖(𝐻𝑖),⊗) 

 𝑓𝑖(𝐻𝑖) ⊆
𝐺𝑖

𝐺𝑖+1
⁄  and 

𝐺𝑖
𝐺𝑖+1

⁄  is a commutative  

Hence, 𝑓𝑖(𝐻𝑖) is a commutative 

Therefore, 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative 

So, (𝐻,∗) is a solvable ∎ 
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Theorem(4-6): 

Let 𝐻∆𝐺 and 𝐺 is a solvable, then 𝐺 𝐻⁄  is a solvable. 

Theorem(4-7): 

Let 𝐻∆𝐺 and both 𝐻,  𝐺
𝐻⁄  are solvable, then (𝐺,∗) is a 

solvable. 

Proof: since (𝐻,∗) is a solvable ⟹  

there is a finite collection of subgroups of (𝐺,∗), 

𝐻0, 𝐻1, … , 𝐻𝑛  such that 

1. 𝐺 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃ 𝐻𝑛−1 ⊃ 𝐻𝑛 = {𝑒}, 

2. 𝐻𝑖+1∆𝐻𝑖    ∀𝑖 = 0, … , 𝑛 − 1, 

3. 
𝐻𝑖

𝐻𝑖+1
⁄  is a commutative group ∀𝑖 = 0, … , 𝑛 − 1. 

Since (𝐺
𝐻⁄ ,⊗) is a solvable ⟹  

there is a finite collection of subgroups of (𝐺,∗), 

𝐺0

𝐻
,

𝐺1

𝐻
, … ,

𝐺𝑟

𝐻
  such that 



Prof. Dr. Najm Al-Seraji, Applications of  Group Theory, 2023 
 

 

 38 

1. 
𝐺

𝐻
=

𝐺0

𝐻
⊃

𝐺1

𝐻
⊃ ⋯ ⊃

𝐺𝑟

𝐻
= {𝑒} = 𝐻, 

2. 
𝐺𝑖+1

𝐻
∆

𝐺𝑖

𝐻
   ∀𝑖 = 0, … , 𝑟 − 1, 

3. 

𝐺𝑖

𝐻
𝐺𝑖+1

𝐻

⁄  is a commutative group ∀𝑖 = 0, … , 𝑟 − 1. 

To prove (𝐺,∗) is a solvable group. 

𝐺

𝐻
=

𝐺0

𝐻
⟹ 𝐺 = 𝐺0 

𝐺𝑟

𝐻
= 𝐻 ⟹ 𝐺𝑟 = {𝑒}  or  𝐺𝑟 = 𝐻 

𝐻∆𝐺𝑟 ⟹ 𝐻 ⊆ 𝐺𝑟 ⟹ 𝐺𝑟 = 𝐻 

So, there is a finite collection 𝐺0, 𝐺1, … , 𝐺𝑟 =

𝐻0, 𝐻1, … , 𝐻𝑛  such that  

1. 𝐺 = 𝐺0 ⊃ 𝐺1 ⊃ ⋯ ⊃ 𝐺𝑟 = 𝐻 = 𝐻0 ⊃ 𝐻1 ⊃ ⋯ ⊃

𝐻𝑛 = {𝑒}. 

2. To prove 𝐺𝑖+1∆𝐺𝑖    ∀𝑖 = 0, … , 𝑟 − 1 

Let 𝑥 ∈ 𝐺𝑖    and   𝑎 ∈ 𝐺𝑖+1   to prove   𝑥 ∗ 𝑎 ∗ 𝑥−1 ∈ 𝐺𝑖+1 

𝑥 ∈ 𝐺𝑖 ⟹ 𝑥 ∗ 𝐻 ∈
𝐺𝑖

𝐻
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𝑎 ∈ 𝐺𝑖+1 ⟹ 𝑎 ∗ 𝐻 ∈
𝐺𝑖+1

𝐻
 

𝐺𝑖+1

𝐻
∆

𝐺𝑖

𝐻
⟹ (𝑥 ∗ 𝐻) ⊗ (𝑎 ∗ 𝐻) ⊗ (𝑥 ∗ 𝐻)−1 ∈

𝐺𝑖+1

𝐻
 

⟹ (𝑥 ∗ 𝑎 ∗ 𝑥−1) ∗ 𝐻 ∈
𝐺𝑖+1

𝐻
⟹ 𝑥 ∗ 𝑎 ∗ 𝑥−1 ∈ 𝐺𝑖+1

⟹ 𝐺𝑖+1∆𝐺𝑖 

3. To prove 
𝐺𝑖

𝐺𝑖+1
  is a commutative group  ∀𝑖 = 0, … , 𝑟 −

1 

𝐺𝑖
𝐻

𝐺𝑖+1
𝐻

 is a commutative group and  

𝐺𝑖
𝐻

𝐺𝑖+1
𝐻

≅
𝐺𝑖

𝐺𝑖+1
  (

𝐺

𝐻
𝐾

𝐻

≅
𝐺

𝐾
) 

⟹
𝐺𝑖

𝐺𝑖+1
 is a commutative group 

Therefore, (𝐺,∗) is a solvable group ∎  

Exercises(4-8); 

 Show that every 𝑝-group is a solvable group. 

 Show that (S4,∘) is a solvable group. 

 Show that (Ζ4, +4) is a solvable group. 

 Show that (Ζ8, +8) is a solvable group. 
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 Show that (Ζ5, +5) is a solvable group. 

 Show that (Ζ6, +6) is a solvable group. 

 Show that (Ζ12, +12) is a solvable group. 

 Show that (Ζ24, +24) is a solvable group. 

 

 

 

 

 

 

 

 

 

 

 

 



Prof. Dr. Najm Al-Seraji, Applications of  Group Theory, 2023 
 

 

 41 

5 Some Applications of Group Theory 

5.1 Cayley Theorem 

Theorem(5-1-1): (Cayley Theorem) 

Every group is an isomorphic to a group of permutations. 

This means if (𝐺,∗) is any group, then (𝐺,∗) ≅ (𝐹𝐺 ,∘), 

where 𝐹𝐺 = {𝑓𝑎: 𝑎 ∈ 𝐺}, 𝑓𝑎: 𝐺 ⟶ 𝐺 ∋  𝑓𝑎(𝑥) = 𝑎 ∗ 𝑥, ∀𝑥 ∈

𝐺. 

Proof: define 𝑔: 𝐺 ⟶ 𝐹𝐺 by 𝑔(𝑎) = 𝑓𝑎, ∀𝑎 ∈ 𝐺 

To prove 𝑔 is a homomorphism, one to one and onto. 

1. 𝑔 is a homomorphism, let 𝑎, 𝑏 ∈ 𝐺 

𝑔(𝑎 ∗ 𝑏) = 𝑓𝑎∗𝑏 = 𝑓𝑎 ∘ 𝑓𝑏 = 𝑔(𝑎) ∘ 𝑔(𝑏) ⟹ 𝑔 is a 

homomorphism. 

2. 𝑔 is a one to one, let𝑔(𝑎) = 𝑔(𝑏), ∀𝑎, 𝑏 ∈ 𝐺  

⟹ 𝑓𝑎 = 𝑓𝑏 ⟹ 𝑓𝑎(𝑥) = 𝑓𝑏(𝑥) ⟹ 𝑎 ∗ 𝑥 = 𝑏 ∗ 𝑥 ⟹ 𝑎 = 𝑏 

⟹ 𝑔 is a one to one. 

3. 𝑔 is a onto, 𝑔(𝐺) = {𝑔(𝑎): 𝑎 ∈ 𝐺} = {𝑓𝑎: 𝑎 ∈ 𝐺} = 𝐹𝐺  
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Therefore, 𝐺 ≅ 𝐹𝐺∎  

Corollary(5-1-2): 

Every finite group (𝐺,∗) of order 𝑛 is an isomorphic to 

(S𝑛,∘). 

Example(5-1-3): 

Consider the following Cayley table of a group  (𝐺 =

{𝑒, 𝑎, 𝑏, 𝑐},∗)  

∗ 𝑒 𝑎 𝑏 𝑐 

𝑒 𝑒 𝑎 𝑏 𝑐 

𝑎 𝑎 𝑒 𝑐 𝑏 

𝑏 𝑏 𝑐 𝑒 𝑎 

𝑐 𝑐 𝑏 𝑎 𝑒 

 

Show that(𝐺,∗) is an isomorphic to a subgroup of (S4,∘). 

Solution:  

𝑓𝑒 = (
𝑒 𝑎
𝑒 𝑎

    
𝑏 𝑐
𝑏 𝑐

),   𝑓1 = (
1 2
1 2

    
3 4
3 4

) =

(1)(2)(3)(4) = (1) 
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𝑓𝑎 = (
𝑒 𝑎
𝑎 𝑒

    
𝑏 𝑐
𝑐 𝑏

),     𝑓2 = (
1 2
2 1

    
3 4
4 3

) = (12)(34) 

𝑓𝑏 = (
𝑒 𝑎
𝑏 𝑐

    
𝑏 𝑐
𝑒 𝑎

),     𝑓3 = (
1 2
3 4

    
3 4
1 2

) = (13)(24) 

𝑓𝑐 = (
𝑒 𝑎
𝑐 𝑏

    
𝑏 𝑐
𝑎 𝑒

),     𝑓4 = (
1 2
4 3

    
3 4
2 1

) = (14)(23) 

Hence, (𝐺,∗) is an isomorphic to the subgroup of (S4,∘): 

{(1), (12)(34), (13)(24), (14)(23)}. 

Example(5-1-4): (Homework) 

Let   (𝐺 = {1, −1, 𝑖, −𝑖},∙) be a group, apply Cayley 

Theorem on 𝐺. 

Example(5-1-5): (Homework) 

Show that (Ζ3, +3) is an isomorphic to a subgroup of 

(S3,∘). 

Exercises(5-1-6): 

 Apply Cayley Theorem on (Ζ4, +4). 

 Apply Cayley Theorem on (G = {±1, ±i, ±j, ±k},∙). 

 Apply Cayley Theorem on (G = {1, −1},∙). 
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 Apply Cayley Theorem on (G = {A = (
1 0
0 1

) , 𝐵 =

(
1 0
0 −1

) , 𝐶 = (
−1 0
0 −1

) , 𝐷 =, (
−1 0
0 1

) ,∙). 
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5.2 Direct Product  

Definition(5-2-1): 

Let (𝐻,∗) and (𝐾,∗) be two normal subgroups of (𝐺,∗), 

then (𝐺,∗) is called an internal direct product of 𝐻 and 𝐾 (𝐺 

is a decomposition by 𝐻 and 𝐾 ) if and only if 𝐺 = 𝐻 ∗ 𝐾 

and  𝐻 ∩ 𝐾 = {𝑒}. 

Example(5-2-2): 

Consider the following Cayley table of a group  (𝐺 =

{𝑒, 𝑎, 𝑏, 𝑐},∗),   𝑎2 = 𝑏2 = 𝑐2 = 𝑒  

∗ 𝑒 𝑎 𝑏 𝑐 

𝑒 𝑒 𝑎 𝑏 𝑐 

𝑎 𝑎 𝑒 𝑐 𝑏 

𝑏 𝑏 𝑐 𝑒 𝑎 

𝑐 𝑐 𝑏 𝑎 𝑒 

 

Let 𝐻 = {𝑒, 𝑎} and 𝐾 = {𝑒, 𝑏}, show that 𝐺 = 𝐻 ⊗ 𝐾 is a 

decomposition by 𝐻 and 𝐾. 

Solution: 𝐻, 𝐾∆𝐺 since 𝐺 is a commutative group 
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𝐻 ∗ 𝐾 = {𝑒, 𝑎, 𝑏, 𝑐} and 𝐻 ∩ 𝐾 = {𝑒} 

Hence, 𝐺 = 𝐻 ⊗ 𝐾 is decomposition by 𝐻 and 𝐾. 

Example(5-2-3): 

Let (𝐺,∗) be any group with 𝐻 = 𝐺 and 𝐾 = {𝑒}, show that  

𝐺 = 𝐻 ⊗ 𝐾 is a decomposition by 𝐻 and 𝐾. 

Solution: 𝐻, 𝐾∆𝐺 

𝐻 ∗ 𝐾 = 𝐺 ∗ {𝑒} = 𝐺 

𝐻 ∩ 𝐾 = 𝐺 ∩ {𝑒} = {𝑒} 

Therefore, 𝐺 = 𝐻 ⊗ 𝐾 is a decomposition by 𝐻 and 𝐾. 

Example(5-2-4): 

Let (Ζ4, +4) be a group. Is  Ζ4 has a proper decomposition. 

Solution: the subgroups of  Ζ4 are  Ζ4, {0,2}, {0} 

Let  H = Ζ4 and K = {0,2} 

H ⊗4 𝐾 =  Ζ4 ⊗4 {0,2} =  Ζ4 

𝐻 ∩ 𝐾 =  Ζ4 ∩ {0,2} = {0,2} 
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So,  Ζ4 ≠  Ζ4 ⊗ {0,2} 

Let H = {0} and K = {0,2} 

𝐻 ⊗4 𝐾 = 𝐾 ≠  Ζ4 

Therefore,  Ζ4 has no proper decomposition. 

Theorem(5-2-5): 

Let H and K be two subgroups of  G  and G = H ⊗ K, then 

G
𝐻⁄ ≅ 𝐾 and G 𝐾⁄ ≅ 𝐻. 

Proof:  

Since G = H ⊗ K ⟹ H ∗ K = G and H ∩ 𝐾 = {𝑒} 

G
𝐻⁄ = H ∗ K

𝐻⁄    and    H ∗ K
𝐻⁄ ≅ K

𝐻 ∩ 𝐾⁄  (by second 

theorem of isomorphic) 

G
𝐻⁄ ≅ K

{𝑒}⁄ ⟹ G
𝐻⁄ ≅ 𝐾 and 

G
𝐾⁄ = H ∗ K

𝐾⁄     and       H ∗ K
𝐾⁄ ≅ H

𝐻 ∩ 𝐾⁄  

G
𝐾⁄ ≅ H

{𝑒}⁄ ⟹ G
𝐾⁄ ≅ 𝐻∎ 

Definition(5-2-6): 
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Let (𝐺1,∗) and (𝐺2,∘) be two groups, define 𝐺1 × 𝐺2 =

{(𝑎, 𝑏): 𝑎 ∈ 𝐺1, 𝑏 ∈ 𝐺2} such that (𝑎, 𝑏)⨀(𝑐, 𝑑) =

(𝑎 ∗ 𝑐, 𝑏 ∘ 𝑑) ∋ 𝑎, 𝑐 ∈ 𝐺1, 𝑏, 𝑑 ∈ 𝐺2. Then   (𝐺1 × 𝐺2, ⨀) is 

a group which is called an external direct product of 𝐺1 and 

𝐺2. 

Example(5-2-7):  (Homework) 

Show that (𝐺1 × 𝐺2, ⨀) is a group. 

Example(5-2-8): 

Let 𝐺1 = (Ζ3, +3) and 𝐺2 = (Ζ2, +2). Find 𝐺1 × 𝐺2. 

Solution: 

𝐺1 × 𝐺2 = Ζ3 × Ζ2

= {(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)} 

(1,1)⨀(2,1) = (0,0) 

o(Ζ3 × Ζ2) = 𝑜(Ζ3). 𝑜(Ζ2) = 6. 

 

 

Theorem(5-2-9): 
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Let (𝐺1,∗) and (𝐺2,∘) be two groups, then  

1. (𝐺1 × 𝐺2, ⨀) is an abelian if and only if both 𝐺1 and 

𝐺2 are abelian. 

2. 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2. 

3. {𝑒1} × 𝐺2 △ 𝐺1 × 𝐺2. 

4. 𝐺1 ≅ 𝐺1 × {𝑒2}. 

5. 𝐺2 ≅ {𝑒2} × 𝐺2. 

Proof: 

1. (⟹) suppose that 𝐺1 × 𝐺2 is an abelian, to prove 

𝐺1and 𝐺2 are abelian. 

Let (𝑎, 𝑒2), (𝑏, 𝑒2) ∈ 𝐺1 × 𝐺2 ∋ 𝑎, 𝑏 ∈ 𝐺1, 𝑒2 ∈ 𝐺2 

Since 𝐺1 × 𝐺2 is an abelian, then  

(𝑎, 𝑒2)⨀(𝑏, 𝑒2) = (𝑏, 𝑒2)⨀(𝑎, 𝑒2) 

(𝑎 ∗ 𝑏, 𝑒2) = (𝑏 ∗ 𝑎, 𝑒2) ⟹ 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎 

Hence, (𝐺1,∗) is an abelian. 

Similarly that (𝐺2,∗) is an abelian. 
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(⟸) suppose that (𝐺1,∗) and (𝐺2,∘) are abelian, to prove 

𝐺1 × 𝐺2 is an abelian. 

Let (𝑎, 𝑏), (𝑐, 𝑑) ∈ 𝐺1 × 𝐺2, to prove (𝑎, 𝑏)⨀(𝑐, 𝑑) =

(𝑐, 𝑑)⨀(𝑎, 𝑏) 

(𝑎, 𝑏)⨀(𝑐, 𝑑) = (𝑎 ∗ 𝑐, 𝑏 ∗ 𝑑) 

(𝑐, 𝑑)⨀(𝑎, 𝑏) = (𝑐 ∗ 𝑎, 𝑑 ∗ 𝑏) 

𝑎 ∗ 𝑐 =  𝑐 ∗ 𝑎  (𝐺1is an abelian) 

𝑏 ∗ 𝑑 =  𝑑 ∗ 𝑏  (𝐺2is an abelian) 

⟹ (𝑎, 𝑏)⨀(𝑐, 𝑑) = (𝑐, 𝑑)⨀(𝑎, 𝑏) 

Therefore, 𝐺1 × 𝐺2 is an abelian. 

2. To prove 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2 

𝐺1 × {𝑒2} = {(𝑎, 𝑒2): 𝑎 ∈ 𝐺1} ≠ ∅ 

To prove (𝐺1 × {𝑒2}, ⨀) is a subgroup of 𝐺1 × 𝐺2 

Let  (𝑎, 𝑒2), (𝑏, 𝑒2) ∈ 𝐺1 × {𝑒2} 

(𝑎, 𝑒2)⨀(𝑏, 𝑒2)−1 = (𝑎, 𝑒2)⨀(𝑏−1, 𝑒2
−1) = (𝑎 ∗ 𝑏−1, 𝑒2) 

So, (𝐺1 × {𝑒2}, ⨀) is a subgroup of 𝐺1 × 𝐺2. 
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To prove 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2 

Let (𝑥, 𝑦) ∈ 𝐺1 × 𝐺2 and  (𝑎, 𝑒2) ∈ 𝐺1 × {𝑒2} 

To prove (𝑥, 𝑦)⨀(𝑎, 𝑒2)⨀(𝑥, 𝑦)−1 ∈ 𝐺1 × {𝑒2} 

(𝑥 ∗ 𝑎 ∗ 𝑥−1, 𝑦 ∗ 𝑒2 ∗ 𝑦−1) = (𝑥 ∗ 𝑎 ∗ 𝑥−1, 𝑒2) ∈ 𝐺1 × {𝑒2} 

Hence, 𝐺1 × {𝑒2} △ 𝐺1 × 𝐺2. 

3. (Homework). 

4. To prove 𝐺1 ≅ 𝐺1 × {𝑒2}. 

Proof: 

Define 𝑓: (𝐺1,∗) ⟶ (𝐺1 × {𝑒2}, ⨀)  ∋ 𝑓(𝑎) = (𝑎, 𝑒2)  

𝑓 is a map ? let  𝑎1, 𝑎2 ∈ 𝐺1 and  𝑎1 = 𝑎2 ⟹ (𝑎1, 𝑒2) =

(𝑎2, 𝑒2) ⟹ 𝑓(𝑎1) = 𝑓(𝑎2), so 𝑓 is a map 

𝑓 is an one to one ? let  𝑓(𝑎1) = 𝑓(𝑎2) ⟹ (𝑎1, 𝑒2) =

(𝑎2, 𝑒2) ⟹ 𝑎1 = 𝑎2, so 𝑓 is a one to one. 

𝑓 is a homomorphism ? 𝑓(𝑎 ∗ 𝑏) = (𝑎 ∗ 𝑏, 𝑒2) =

(𝑎, 𝑒2)⨀(𝑏, 𝑒2) = 𝑓(𝑎)⨀𝑓(𝑏), so 𝑓 is a homomorphism 
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𝑓 is an onto ?   𝑅𝑓 = {𝑓(𝑎): 𝑎 ∈ 𝐺1} = {(𝑎, 𝑒2): 𝑎 ∈ 𝐺1} =

𝐺1 × {𝑒2} so 𝑓 is an onto. 

Therefore, (𝐺1,∗) ≅ (𝐺1 × {𝑒2}, ⨀)∎ 

5. (Homework)  

Theorem(5-2-10): 

Let (𝐺1,∗) and (𝐺2,∘) be two 𝑝-groups, then  (𝐺1 × 𝐺2, ⨀) 

is a 𝑝-group. 

Proof: 

Since 𝐺1is 𝑝-group ⟹ 𝑜(𝐺1) = 𝑝𝑘1 , 𝑘1 ∈ 𝛧+ 

Since 𝐺2is 𝑝-group ⟹ 𝑜(𝐺2) = 𝑝𝑘2 , 𝑘2 ∈ 𝛧+ 

𝑜(𝐺1 × 𝐺2) = 𝑜(𝐺2) × 𝑜(𝐺1) = 𝑝𝑘1 × 𝑝𝑘2

= 𝑝𝑘1+𝑘2 , 𝑘1 + 𝑘2 ∈  𝛧+ 

Therefore,   𝐺1 × 𝐺2 is a 𝑝-group ∎ 

Exercises(5-2-11): 

 Let 𝐻 = {0,2,4}  and  𝐾 = {0,3} are subgroups of  

(Ζ6, +6), show that    Ζ6 = 𝐻 ⊗ 𝐾 is a decomposition. 



Prof. Dr. Najm Al-Seraji, Applications of  Group Theory, 2023 
 

 

 53 

 Let 𝐻 = {0}, show that Ζ7 = 𝐻 ⊗ Ζ7 is a 

decomposition. 

 Find Ζ3 × Ζ7. 

 Is S3 × Ζ2 an abelian? 

 Is G𝑠 × Ζ2 an abelian? 

 Is S3 × G𝑆 an abelian? 

 Is {±1, ±i} × Ζ2 an abelian? 

 Is Ζ4 × Ζ8 a 𝑝-group? 

 Is Ζ5 × Ζ25 a 𝑝-group? 

 Is Ζ11 × Ζ121 a 𝑝-group? 

 Is Ζ7 × Ζ49 a 𝑝-group? 

 Is Ζ27 × Ζ3 a 𝑝-group? 

 Is Ζ5 × Ζ125 a 𝑝-group? 

 Is Ζ2 × Ζ64 a 𝑝-group? 

 Is Ζ4 × Ζ128 a 𝑝-group? 

 Is Ζ9 × Ζ81 a 𝑝-group? 

 Is Ζ27 × Ζ81 a 𝑝-group? 

 Is Ζ128 × Ζ8 a 𝑝-group? 

 Is Ζ2 × Ζ256 a 𝑝-group? 


