Applications of Group Theory

References:

- Introduction to Modern Abstract Algebra, by David M. Burton.
- Groups and Numbers, by R. M. Luther.
- A First Course in Abstract Algebra, by J. B. Fraleigh.
- Group Theory, by M. Suzuki.
- Abstract Algebra Theory and Applications, by Thomas W. Judson.
- Abstract Algebra, by I. N. Herstein.
- Basic Abstract Algebra, by P. B. Bhattacharya, S. K. Jain and S. R. Nagpaul.

1. The Jordan-Holder Theorem and Related Concepts.

Definition(1-1):

By a *chain* for a group (G,*) is meant any finite sequence of subsets of

 $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ descending from G to $\{e\}$ with the property that all the pairs $(H_i,*)$ are subgroups of (G,*).

Remark(1-2):

The integer n is called the length of the chain. When n=1, then the chain in definition (1-1) will called the trivial.

Example(1-3):

Find all chains in a group $(Z_4, +_4)$.

Solution: The subgroups of a group $(Z_4, +_4)$ are :

- $H_1 = (Z_4, +_4)$
- $H_2 = (\{0\}, +_4)$
- $H_3 = (\langle 2 \rangle, +_4) = (\{0,2\}, +_4)$

The chains of a group $(Z_4, +_4)$ are

 $Z_4 \supset \{0\}$ is a chain of length one

 $Z_4 \supset \langle 2 \rangle \supset \{0\}$ is a chain of length two.

Example(1-4):

In the group $(Z_{12}, +_{12})$ of integers modulo 12, the following chains are normal chains:

$$Z_{12} \supset \langle 6 \rangle \supset \{0\},$$

$$Z_{12} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\},$$

$$Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\},$$

$$Z_{12} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \{0\}.$$

All subgroups are normal, since $(Z_{12}, +_{12})$ is a commutative group.

<u>Definition(1-5):</u> (Normal Chain)

If $(H_i,*)$ is a normal subgroup of a group (G,*) for all $i=1,\ldots,n$, then the chain $G=H_0\supset H_1\supset\cdots\supset H_{n-1}\supset H_n=\{e\}$ is called a *normal chain*.

Example(1-6):

Find all chains in the following groups and determine their length and type.

- $(Z_6, +_6);$
- $(Z_8, +_8);$
- $(Z_{18}, +_{18})$ (**Homework**);
- $(Z_{21}, +_{21})$ (Homework).

Solution: The subgroups of a group $(Z_6, +_6)$ are :

$$H_1 = (Z_6, +_6)$$

$$H_2 = (\{0\}, +_6)$$

$$H_3 = (\langle 2 \rangle, +_6) = (\{0,2,4\}, +_6)$$

$$H_4 = (\langle 3 \rangle, +_6) = (\{0,3\}, +_6)$$

Then the chains in $(Z_6, +_6)$ are:

 $Z_6 \supset \{0\}$ is a trivial chain of length one

 $Z_6 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_6 \supset \langle 3 \rangle \supset \{0\}$ is a normal chain of length two.

The subgroups of a group $(Z_8, +_8)$ are :

$$H_1 = (Z_8, +_8)$$

$$H_2 = (\{0\}, +_8)$$

$$H_3 = (\langle 2 \rangle, +_8) = (\{0, 2, 4, 6\}, +_8)$$

$$H_4 = (\langle 4 \rangle, +_6) = (\{0,4\}, +_8)$$

Then the chains in $(Z_8, +_8)$ are:

 $Z_8 \supset \{0\}$ is a trivial chain of length one

 $Z_8 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_8 \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two

 $Z_8 \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length three.

Definition(1-7): (Composition Chain)

In the group (G,*), the descending sequence of sets

$$G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$$

forms a *composition chain* for (G,*) provided

- 1. $(H_i,*)$ is a subgroup of (G,*),
- 2. $(H_i,*)$ is a normal subgroup of $(H_{i-1},*)$,

3. The inclusion $H_{i-1} \supseteq K \supseteq H_i$, where (K,*) is a normal subgroup of $(H_{i-1},*)$, implies either $K = H_{i-1}$ or $K = H_i$.

Remark(1-8):

Every composition chain is a normal, but the converse is not true in general, the following example shows that.

Example(1-9):

In the group $(Z_{24}, +_{24})$, the normal chain

$$Z_{24} \supset \langle 2 \rangle \supset \langle 12 \rangle \supset \{0\}$$

is not a composition chain, since it may be further refined by inserting of the set $\langle 4 \rangle$ or $\langle 6 \rangle$. On other hand,

$$Z_{24} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \langle 8 \rangle \supset \{0\}$$

and

$$Z_{24} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

are both composition chains for $(Z_{24}, +_{24})$.

Example(1-10):

Find all chains in the following groups and determine their length and type.

- $(Z_8, +_8);$
- $(Z_{12}, +_{12});$
- $(Z_{18}, +_{18})$ (**Homework**).

Solution: The subgroups of a group $(Z_8, +_8)$ are :

$$H_1 = (Z_8, +_8)$$

$$H_2 = (\{0\}, +_8)$$

$$H_3 = (\langle 2 \rangle, +_8) = (\{0, 2, 4, 6\}, +_8)$$

$$H_4 = (\langle 4 \rangle, +_8) = (\{0,4\}, +_8)$$

Then the chains in $(Z_8, +_8)$ are:

 $Z_8 \supset \{0\}$ is a trivial chain of length one.

 $Z_8 \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two, but it is not composition chain, since there is a normal subgroup $\langle 4 \rangle$ in Z_8 , such that $\langle 2 \rangle \supset \langle 4 \rangle$.

 $Z_8 \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two, but it is not composition chain, since there is a normal subgroup $\langle 2 \rangle$ in Z_8 , such that $\langle 2 \rangle \supset \langle 4 \rangle$.

 $Z_8 \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a composition chain of length three.

The subgroups of a group $(Z_{12}, +_{12})$ are:

$$H_1 = (\mathbf{Z}_{12}, +_{12})$$

$$H_2 = (\{0\}, +_{12})$$

$$H_3 = (\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

$$H_4 = (\langle 3 \rangle, +_{12}) = (\{0,3,6,9\}, +_{12})$$

$$H_5 = (\langle 4 \rangle, +_{12}) = (\{0,4,8\}, +_{12})$$

$$H_6 = (\langle 6 \rangle, +_{12}) = (\{0,6\}, +_{12})$$

Then the chains in $(Z_{12}, +_{12})$ are:

 $Z_{12} \supset \{0\}$ is a trivial chain of length one.

 $Z_{12} \supset \langle 2 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 3 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 4 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 6 \rangle \supset \{0\}$ is a normal chain of length two.

 $Z_{12} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a composition chain of length three.

 $Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\}$ is a composition chain of length three.

Example(1-11):

Let (G,*) be the group of symmetries of the square.

A normal chain for (G,*) which fails to be a composition chain is

$$G \supset \{R_{180}, R_{360}\} \supset \{R_{360}\}.$$

Example(1-12): (Homework)

Determine the following chain whether normal, composition:

$$G \supset \{R_{90}, R_{180}, R_{270}, R_{360}\} \supset \{R_{180}, R_{360}\} \supset \{R_{360}\}.$$

Example(1-13):

The group (Z, +) has no a composition chain, since the normal subgroups of (Z, +) are the cyclic subgroups $(\langle n \rangle), +)$, n a nonnegative integer, Since the inclusion $\langle kn \rangle \subseteq \langle n \rangle$ holds for all $k \in Z_+$, there always exists a proper subgroup of any given group.

Definition(1-14):

A normal subgroup (H,*) is called a *maximal normal* subgroup of the group (G,*) if $H \neq G$ and there exists no normal subgroup (K,*) of (G,*) such that $H \subset K \subset G$.

Example(1-15):

In the group $(Z_{24}, +_{24})$, the cyclic subgroups $(\langle 2 \rangle, +_{24})$ and $(\langle 3 \rangle, +_{24})$ are both maximal normal with orders 12 and 8, respectively.

Example(1-16):

Determine the maximal normal subgroups in the group $(Z_{12}, +_{12})$.

Solution: The normal subgroups of $(Z_{12}, +_{12})$ are:

$$H_1 = (\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

$$H_2 = (\langle 3 \rangle, +_{12}) = (\{0,3,6,9\}, +_{12})$$

$$H_3 = (\langle 4 \rangle, +_{12}) = (\{0,4,8\}, +_{12})$$

$$H_4 = (\langle 6 \rangle, +_{12}) = (\{0,6\}, +_{12})$$

The maximal normal subgroups of $(Z_{12}, +_{12})$ are H_1 and H_2 , since there is no normal subgroup in Z_{12} containing H_1 and H_2 .

Remark(1-17):

A chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is a composition of a group (G,*), if each normal subgroup $(H_i,*)$ is a maximal normal subgroup of $(H_{i-1},*)$, for all $i=1,\ldots,n$.

Example(1-18);

In the group $(Z_{12}, +_{12})$ the chains $Z_{12} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \{0\}$ is a composition of Z_{12} , since

 $\langle 2 \rangle$ is a maximal normal subgroup of Z_{12} ,

- $\langle 4 \rangle$ is a maximal normal subgroup of $\langle 2 \rangle$,
- $\{0\}$ is a maximal normal subgroup of $\langle 4 \rangle$, and

 $Z_{12} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \{0\}$ is a composition of Z_{12} , since

- $\langle 3 \rangle$ is a maximal normal subgroup of Z_{12} ,
- $\langle 6 \rangle$ is a maximal normal subgroup of $\langle 3 \rangle$,
- $\{0\}$ is a maximal normal subgroup of $\langle 6 \rangle$.

Theorem(1-19):

A normal subgroup (H,*) of the group (G,*) is a maximal if and only if the quotient $(G/H, \otimes)$ is a simple.

Proof:

- \Rightarrow) Let K be a normal subgroup of G with $H \subseteq K$ there corresponds between $({}^G/_H, \otimes)$ and $({}^K/_H, \otimes)$ such that this correspondence is one-to-one. Hence, H is a maximal normal in $K \Rightarrow H$ is a maximal normal in G (by correspondence) $\Rightarrow {}^G/_H$ is a simple.
- \Leftarrow) let G/H be a simple

 \Rightarrow $G/_H$ has two normal subgroups which are e*H and $G/_H$, but e*H=H

Therefore H is a maximal

Corollary(1-20):

The group $(^G/_H, \otimes)$ is a simple, if $|^G/_H|$ is a prime number.

Examples(1-21);

- 1. Show that $(\langle 2 \rangle, +_{12})$ is a maximal normal subgroup of $(Z_{12}, +_{12})$.
- 2. Show that $(\langle 3 \rangle, +_{15})$ is a maximal normal subgroup of $(Z_{15}, +_{15})$. (**Homework**)

Solution(1):
$$(\langle 2 \rangle, +_{12}) = (\{0, 2, 4, 6, 8, 10\}, +_{12})$$

$$|G/H| = \frac{|G|}{|H|} = \frac{|Z_{12}|}{|\langle 2 \rangle|} = \frac{12}{6} = 2$$
 is a prime $\Rightarrow \frac{Z_{12}}{\langle 2 \rangle}$ is a simple

(by Corollary (1-20)). From Theorem (1-19), we get that

 $\langle 2 \rangle$ is a maximal normal subgroup of Z_{12} .

Corollary(1-22):

A normal chain $G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$ is a composition of a group (G,*), if $\binom{H_i}{H_{i-1}}, \otimes$ is a simple group for all i = 1, ..., n.

Example(1-23);

Show that $Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$ is a composition chain of a group $(Z_{60}, +_{60})$.

Solution:
$$\frac{|Z_{60}|}{|\langle 3 \rangle|} = \frac{60}{20} = 3$$
 is a prime $\Rightarrow \frac{Z_{60}}{\langle 3 \rangle}$ is a simple.

So, we get that $\langle 3 \rangle$ is a maximal normal subgroup of \mathbb{Z}_{60} .

$$\frac{|\langle 3 \rangle|}{|\langle 6 \rangle|} = \frac{20}{10} = 2$$
 is a prime $\Rightarrow \frac{\langle 3 \rangle}{\langle 6 \rangle}$ is a simple.

So, we get that $\langle 6 \rangle$ is a maximal normal subgroup of $\langle 3 \rangle$.

$$\frac{|\langle 6 \rangle|}{|\langle 12 \rangle|} = \frac{10}{5} = 2$$
 is a prime $\Rightarrow \frac{\langle 6 \rangle}{\langle 12 \rangle}$ is a simple.

So, we get that $\langle 12 \rangle$ is a maximal normal subgroup of $\langle 6 \rangle$.

$$\frac{|\langle 12 \rangle|}{|\{0\}|} = \frac{5}{1} = 5$$
 is a prime $\Rightarrow \frac{\langle 12 \rangle}{\{0\}}$ is a simple.

So, we get that $\{0\}$ is a maximal normal subgroup of $\langle 12 \rangle$.

By corollaries (1-19) and (1-21), we have that $Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$ is a composition chain of a group $(Z_{60}, +_{60})$.

Theorem(1-24):

Every finite group (G,*) with more than one element has a composition chain.

<u>Theorem(1-25):</u> (Jordan-Holder)

In a finite group (G,*) with more than one element, any two composition chains are equivalent.

Example(1-26):

In a group $(Z_{60}, +_{60})$, show that the two chains

$$Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$

$$Z_{60} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \langle 30 \rangle \supset \{0\},$$

are compositions and equivalent.

Solution:

$$(\overset{Z_{60}}{}_{\langle 3\rangle}, \otimes) \cong (\overset{\langle 2\rangle}{}_{\langle 6\rangle}, \otimes), \text{ since } \left|\overset{Z_{60}}{}_{\langle 3\rangle}\right| = \frac{60}{20} = 3 =$$

$$\left|\overset{\langle 2\rangle}{}_{\langle 6\rangle}\right| = \frac{30}{10},$$

$$(\overset{\langle 3\rangle}{}_{\langle 6\rangle}, \otimes) \cong (\overset{Z_{60}}{}_{\langle 2\rangle}, \otimes), \text{ since } \left|\overset{\langle 3\rangle}{}_{\langle 6\rangle}\right| = \frac{20}{10} = 2 =$$

$$\left|\overset{Z_{60}}{}_{\langle 2\rangle}\right| = \frac{60}{30},$$

$$(\overset{\langle 6\rangle}{}_{\langle 12\rangle}, \otimes) \cong (\overset{\langle 30\rangle}{}_{\langle 0\}}, \otimes), \text{ since } \left|\overset{\langle 6\rangle}{}_{\langle 12\rangle}\right| = \frac{10}{5} =$$

$$2 = \left|\overset{\langle 30\rangle}{}_{\langle 0\}}\right| = \frac{2}{1},$$

$$(\overset{\langle 12\rangle}{}_{\langle 0\rangle}, \otimes) \cong (\overset{\langle 6\rangle}{}_{\langle 30\rangle}, \otimes), \text{ since } \left|\overset{\langle 12\rangle}{}_{\langle 0\rangle}\right| = \frac{5}{1} =$$

$$5 = \left|\overset{\langle 6\rangle}{}_{\langle 30\rangle}\right| = \frac{10}{2}.$$

Therefore, by Jordan-Holder theorem the two chains

$$Z_{60} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\}$$
$$Z_{60} \supset \langle 2 \rangle \supset \langle 6 \rangle \supset \langle 30 \rangle \supset \{0\},$$

are compositions and equivalent.

Exercises(1-27):

- Check that the following chains represent composition chains for the indicated group.
- a. For $(Z_{36}, +_{36})$, the group of integers modulo 36:

$$Z_{36} \supset \langle 3 \rangle \supset \langle 9 \rangle \supset \langle 18 \rangle \supset \{0\}.$$

b. For $(G_s,*)$, the group of symmetries of the square:

$$G \supset \{R_{180}, R_{360}, D_1, D_2\} \supset \{R_{360}, D_1\} \supset \{R_{360}\}.$$

c. For $(\langle a \rangle, *)$, a cyclic group of order 30:

$$\langle a \rangle \supset \langle a^5 \rangle \supset \langle a^{10} \rangle \supset \{e\}.$$

d. For (S_3, \circ) , the symmetric group on 3 symbols:

$$S_3 \supset \{i, (123), (132)\} \supset \{i\}.$$

- Find a composition chain for the symmetric group (S_4, \circ) .
- Prove that the cyclic subgroup $(\langle n \rangle, +)$ is a maximal normal subgroup of (Z, +) if and only if n is a prime number.
- Establish that the following two composition chains for $(Z_{36}, +_{36})$ are equivalent:

$$Z_{24} \supset \langle 3 \rangle \supset \langle 6 \rangle \supset \langle 12 \rangle \supset \{0\},$$

$$Z_{24} \supset \langle 2 \rangle \supset \langle 4 \rangle \supset \langle 12 \rangle \supset \{0\}.$$

- Find all composition chains for $(Z_{36}, +_{36})$.
- Find all composition chains for $(G_s,*)$.

2. P- Groups and Related Concepts.

<u>Definition(2-1):</u> (p- Group)

A finite group (G,*) is said to be p-group if and only if the order of each element of G is a power of fixed prime p.

<u>Definition(2-2):</u> (p- Group)

A finite group (G,*) is said to be p-group if and only if $|G| = p^k, k \in \mathbb{Z}$, where p is a prime number.

Example(2-3):

Show that $(Z_4, +_4)$ is a p-group.

Solution: $Z_4 = \{0,1,2,3\}$ and $|Z_4| = 4 = 2^2$

 \Rightarrow Z₄ is a 2- group, with

$$o(0) = 1 = 2^0$$
,

$$o(1) = 4 = 2^2$$
,

$$o(2) = 2 = 2^1$$
,

$$o(3) = 4 = 2^2.$$

Example(2-4):

Determine whether $(Z_6, +_6)$ is a p-group.

Solution: $Z_6 = \{0,1,2,3,4,5\}$ and $|Z_6| = 6 \neq P^k$

 \Rightarrow Z₆ is not p- group.

Example(2-5): (Homework)

Determine whether (G_s, \circ) is a p-group.

Examples(2-6):

- $(Z_8, +_8)$ is a 2-group, since $|Z_8| = 8 = 2^3$,
- $(Z_9, +_9)$ is a 3- group, since $|Z_9| = 9 = 3^2$,
- $(Z_{25}, +_{25})$ is a 5- group, since $|Z_{25}| = 25 = 5^2$.

Theorem(2-7):

Let $H\Delta G$, then G is a p- group if and only if H and G/H are p- groups.

Proof: (\Rightarrow) Assume that G is a p- group, to prove that H and G/H are p- groups.

Since G is a p-group \Rightarrow o(a) = p^x, for some x \in Z⁺, $\forall a \in$ G.

Since $H \subseteq G \implies \forall a \in H \text{ group} \implies o(a) = p^x$, for some $x \in Z^+$.

So, H is a p- group.

To prove G/H is a p- group.

Let $a * H \in {}^{G}/_{H}$, to prove o(a * H) is a power of p.

$$(a*H)^{p^x} = a^{p^x} * H = e*H = H$$
, $(a^{p^x} = e \text{ since G is a})$
p-group \Longrightarrow o(a) = p^x)

 (\Leftarrow) Suppose that H and G/H are p-groups, to prove G is a p- group.

Let $a \in H$, to prove o(a) is a power of p.

$$(a * H)^{p^x} = H \dots (1) \ (^{G}/_{H} \text{ is a p- group})$$

$$(a * H)^{p^x} = a^{p^x} * H \dots (2)$$

From (1) and (2), we have $a^{p^x} * H = H \Longrightarrow a^{p^x} \in H$ and His a p- group,

$$\Rightarrow o(a^{p^x}) = p^r, r \in Z^+$$

$$\Rightarrow o(a^{p^x}) = p^r, r \in Z^+$$

$$\Rightarrow (a^{p^x})^{p^r} = e \Rightarrow a^{p^{x+r}} = e, \ x + r \in Z^+,$$

$$\Rightarrow o(a) = p^{x+r}$$

Therefore, G is a p- group ■

Examples(2-8):

Apply theorem(2-7) on $(Z_{32}, +_{32})$.

Solution:

$$|Z_{32}| = 32 = 2^5$$
 is a 2- group.

By theorem (2-7), H and $G/_H$ are 2- groups.

$$o(G)/o(H) \implies o(H) = 2^x, 0 \le x \le 5.$$

$$o(H) = 2^0 \text{ or } 2^1 \text{ or } 2^2 \text{ or } 2^3 \text{ or } 2^4 \text{ or } 2^5,$$

$$o(H) = 2^{0}$$
 is a 2-group $\Rightarrow o(G/H) = o(G)/o(H) = \frac{2^{5}}{2^{0}} =$

 2^5 is a 2- group.

$$o(H) = 2^1$$
 is a 2-group $\Rightarrow {o(G)/o(H)} = 2^4$

$$o(H) = 2^2$$
 is a 2-group $\Rightarrow o(G)/o(H) = 2^3$

$$o(H) = 2^3$$
 is a 2-group $\Rightarrow o(G)/o(H) = 2^2$

$$o(H) = 2^4$$
 is a 2-group $\Rightarrow {o(G)}/{o(H)} = 2$

$$o(H) = 2^5$$
 is a 2-group $\Longrightarrow o(G)/_{o(H)} = 1$.

Remark(2-9);

If G is a non-trivial p-group, then $Cent(G) \neq e$.

Theorem(2-10):

Every group of order p² is an abelian.

Proof: Let G be a group of order p², to prove G is an abelian.

Let Cent(G) is a subgroup of G.

By Lagrange Theorem o(G)/o(Cent(G)),

$$\Rightarrow p^2 /_{o(Cent(G))}$$

$$\Rightarrow o(Cent(G)) = p^0 \text{ or } p^1 \text{ or } p^2$$

If $o(\text{Cent}(G)) = p^0 \implies o(\text{Cent}(G)) = \{e\}$, but this is contradiction with remark(2-9), so $o(\text{Cent}(G)) \neq p^0$.

If
$$o(Cent(G)) = p^2 = o(G) \Longrightarrow Cent(G) = G$$

 \Rightarrow G is an abelian.

If
$$o(Cent(G)) = p^1 \implies o(G/Cent(G)) = \frac{p^2}{p^1} = p$$

^G/Cent(G) is a cyclic.

Therefore, G is an abelian

Remark(2-11):

The converse of theorem(2-10) is not true in general, for example $(Z_8, +_8)$ is an abelian, but $o((Z_8) = 2^3 \neq p^2)$.

Exercises(2-12):

- Let P and Q be two normal p-subgroups of a finite group G. Show that PQ is a normal p-subgroup of G.
- Determine whether $(Z_{125}, +_{125})$ is a p-group.
- Determine whether $(Z_{121}, +_{121})$ is a p-group.
- Determine whether $(Z_{41}, +_{41})$ is a p-group.
- Determine whether $(Z_{16}, +_{16})$ is a p-group.
- Determine whether $(Z_{625}, +_{625})$ is a p-group.
- Determine whether $(Z_{185}, +_{185})$ is a p-group.
- Determine whether $(Z_{128}, +_{128})$ is a p-group.
- Determine whether $(Z_{256}, +_{256})$ is a p-group.

- Determine whether $(Z_{100}, +_{100})$ is a p-group.
- Show that $G_{\ell} = \{\pm 1, \pm i, \pm j, \pm k\}$, is a p-group.

3. Sylow Theorem

<u>Definition(3-1):</u> (Sylow p- Subgroup)

Let (G,*) be a finite group and p is a prime number, a subgroup (H,*) of a group G is called *sylow p- subgroup* if

- 1. (H,*) is a p-group,
- 2. (*H*,*) is not contained in any other p- subgroup of *G* for the same prime number p.

Example(3-2);

Find sylow 2- subgroups and sylow 3- subgroup of the group $(Z_{24}, +_{24})$.

Solution: The proper subgroups of the group $(Z_{24}, +_{24})$ are

- 1. $(\langle 2 \rangle, +_{24}) \Longrightarrow o(\langle 2 \rangle) = 12 \neq P^k \Longrightarrow \langle 2 \rangle$ is not p-subgroup.
- $2.(\langle 3 \rangle, +_{24}) \Longrightarrow o(\langle 3 \rangle) = 8 = 2^3 \Longrightarrow \langle 3 \rangle$ is a 2-subgroup.
- $3.(\langle 4 \rangle, +_{24}) \Longrightarrow o(\langle 4 \rangle) = 6 \neq P^k \Longrightarrow \langle 4 \rangle$ is not p-subgroup.
- $4. (\langle 6 \rangle, +_{24}) \Longrightarrow o(\langle 6 \rangle) = 4 = 2^2 \Longrightarrow \langle 6 \rangle$ is a 2-subgroup.
- $5.(\langle 8 \rangle, +_{24}) \Longrightarrow o(\langle 8 \rangle) = 3 = 3^1 \Longrightarrow \langle 8 \rangle$ is a 3-subgroup.
- 6. $(\langle 12 \rangle, +_{24}) \Rightarrow o(\langle 12 \rangle) = 2 = 2^1 \Rightarrow \langle 12 \rangle$ is a 2-subgroup.

Theorem(3-3): (First Sylow Theorem)

Let (G,*) be a finite group of order p^kq , where p is a prime number is not dividing q, then G has sylow p- subgroup of order p^k .

Example(3-4):

Find sylow 2- subgroup of the group $(Z_{12}, +_{12})$.

Solution:
$$o(Z_{12}) = 12 = (4)(3) = (2^2)(3)$$
, and $2 \nmid 3$

 \Rightarrow by first sylow theorem, the group $(Z_{12}, +_{12})$ has sylow 2- subgroup of order 2^2 .

 \Rightarrow ($\langle 3 \rangle$, $+_{12}$) is a sylow 2- subgroup.

Example(3-5):

Find sylow 7- subgroup of the group $(Z_{42}, +_{42})$.

Solution: $o(Z_{42}) = 42 = (7)(6)$, and $7 \nmid 6$

 \Rightarrow by first sylow theorem, the group $(Z_{42}, +_{42})$ has sylow 7- subgroup of order 7^1 .

 \Rightarrow ((6), +₄₂) is a sylow 7- subgroup.

Example(3-6):

Find sylow 3- subgroup of the group $(Z_{24}, +_{24})$.

Solution: $o(\mathbb{Z}_{24}) = 24 = (3)(8) = (3^1)(8)$, and $3 \nmid 8$

 \Rightarrow by first sylow theorem, the group $(Z_{24}, +_{24})$ has sylow 3- subgroup of order 3^1 .

 \Rightarrow ($\langle 8 \rangle$, $+_{24}$) is a sylow 3- Subgroup.

Theorem(3-7):

Let p a prime number and G be a finite group such that $p^x \setminus o(G), x \ge 1$, then G has a subgroup of order p^x which is called sylow p- subgroup of G.

Example(3-8):

Are the following groups (S_3,\circ) and (G_s,\circ) have sylow p-subgroups.

Solution:

$$(S_3, \circ), O(S_3) = 6 = (2)(3),$$

 $2 \setminus 6 \Rightarrow \exists$ a subgroup H such that o(H) = 2 which is called sylow 2- subgroup.

Also, $3 \setminus 6 \Rightarrow \exists$ a subgroup K such that o(K) = 3 which is called sylow 3- subgroup.

$$(G_s, \circ), o(G_s) = 2^3 \text{ is } 2\text{- subgroup.}$$

Every subgroup of G_s is 2- subgroup, $o(H) = 2^0$ or 2^1 or 2^2 or 2^3 .

Theorem(3-9): (Second Sylow Theorem)

The number of distinct sylow p-subgroups is k = 1 + tp, t = 0,1,... which is divide the order of G.

Example(3-10):

Find the distinct sylow p-subgroups of (S_3, \circ) .

Solution:

$$o(S_3) = 6 = (2)(3),$$

 $2 \setminus 6 \Longrightarrow \exists$ a subgroup H such that o(H) = 2.

The number of sylow 2-subgroups is $k_1 = 1 + 2t$, t = 0,1,... and $k_1 \setminus 6$

if
$$t = 0 \Longrightarrow k_1 = 1$$
 and $1 \setminus 6$

if
$$t = 1 \Rightarrow k_1 = 3$$
 and $3 \setminus 6$

if
$$t = 2 \implies k_1 = 5$$
 and $5 \nmid 6$

if
$$t = 3 \Longrightarrow k_1 = 7$$
 and $7 \nmid 6$

so, there are two sylow 2-subgroups.

 $3 \setminus 6 \Longrightarrow \exists$ a subgroup K such that o(K) = 3.

The number of sylow 3-subgroups is $k_2 = 1 + 3t$, t = 0,1,... and $k_2 \setminus 6$

if
$$t = 0 \implies k_2 = 1$$
 and $1 \setminus 6$

if
$$t = 1 \Longrightarrow k_2 = 4$$
 and $4 \nmid 6$

if
$$t = 2 \Longrightarrow k_2 = 7$$
 and $7 \nmid 6$

So, there is one sylow 3-subgroup.

Example(3-11):

Find the number of sylow p-subgroups of G such that o(G) = 12.

Solution: $o(G) = 12 = (3)(2^2)$

 $3 \setminus 12 \Longrightarrow \exists$ a subgroup H such that o(H) = 3.

The number of sylow 3-subgroups is $k_1 = 1 + 3t$, t = 0,1,... and $k_1 \setminus 12$

if
$$t = 0 \implies k_1 = 1$$
 and $1 \setminus 12$

if
$$t = 1 \Longrightarrow k_1 = 4$$
 and $4 \setminus 12$

if
$$t = 2 \Longrightarrow k_1 = 7$$
 and $7 \nmid 12$

if
$$t = 3 \implies k_1 = 10$$
 and $10 \nmid 12$

So, there are two sylow 3-subgroups of G.

The number of sylow 2-subgroups is $k_2 = 1 + 2t$, t = 0,1,... and $k_2 \setminus 12$

if
$$t = 0 \implies k_2 = 1$$
 and $1 \setminus 12$

if
$$t = 1 \implies k_2 = 3$$
 and $3 \setminus 12$

if
$$t = 2 \Longrightarrow k_2 = 5$$
 and $5 \nmid 12$

if
$$t = 3 \implies k_2 = 7$$
 and $7 \nmid 12$

So, there are two sylow 2-subgroups of G.

Remark(3-12):

The group G has exactly one sylow p-subgroup H if and only if $H\Delta G$.

Example(3-13):

$$(S_3, \circ), H = \{f_1 = i, f_2 = (123), f_3 = (132)\}$$

 $H\Delta G \Longrightarrow H$ is a sylow 3-subgroup of S_3 ,

So, there is one sylow 3-subgroup of S_3 .

Exercises(3-14);

- Show that there is no simple group of order 200.
- Show that there is no simple group of order 56.
- Show that there is no simple group of order 20.
- Show that whether (G_{ℓ}, \cdot) is a sylow.

4. Solvable Groups and Their Applications

Definition(4-1):

A group (G,*) is called a solvable group if and only if, there is a finite collection of subgroups of (G,*), $H_0, H_1, ..., H_n$ such that

$$1. G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\},\$$

$$2.H_{i+1}\Delta H_i \quad \forall i=0,\ldots,n-1,$$

3.
$$H_i/H_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Example(4-2):

Show that, every commutative group is a solvable group.

Solution:

Suppose that (G,*) is a commutative, to show that (G,*) is a solvable.

Let
$$G = H_0$$
 and $H_1 = \{e\}$

- $1. G = H_0 \supset H_1 = \{e\}$
- 2. $H_1\Delta H_0$ satisfies, since $\{e\}\Delta G$, or (every subgroup of commutative group is a normal)
- 3. $G/\{e\}\cong G$ is a commutative group, or (the quotient of commutative group is a commutative)

So, (G,*) is a solvable group,

Example(4-3):

Show that (S_3, \circ) is a solvable group.

Solution: let $H_0 = S_3$, $H_1 = \{f_1 = i, f_2 = (123), f_3 = (132)\}$, $H_2 = \{f_1\}$

- $1. S_3 = H_0 \supset H_1 \supset H_2 = \{e\}$
- 2. $H_2\Delta H_1$ satisfies, since $\{f_1\}\Delta\{f_1, f_2, f_3\}$, $H_1\Delta H_0$ is true, since $[S_3: H_1] = 2 \Longrightarrow H_1\Delta S_3$
- 3. To prove H_i/H_{i+1} is a commutative group $\forall i = 0,1$

$$o(H_1/H_2) = \frac{o(H_1)}{o(H_2)} = \frac{3}{1} = 3 < 6 \Longrightarrow H_1/H_2$$
 is a

commutative group

$$o(H_0/H_1) = \frac{o(H_0)}{o(H_1)} = \frac{6}{3} = 2 < 6 \Longrightarrow H_0/H_1$$
 is a

commutative group

Therefore, (S_3, \circ) is a solvable group.

Example(4-4): (Homework)

Show that (G_s, \circ) is a solvable group.

Theorem(4-5):

Every subgroup of a solvable group is a solvable.

Proof: let (H,*) be a subgroup of (G,*) and (G,*) is a solvable group.

To prove (H,*) is a solvable.

Since G is a solvable \Longrightarrow

there is a finite collection of subgroups of (G,*), $G_0, G_1, ..., G_n$ such that

$$1. G = G_0 \supset G_1 \supset \cdots \supset G_{n-1} \supset G_n = \{e\},\$$

$$2. G_{i+1} \Delta G_i \quad \forall i = 0, \dots, n-1,$$

3.
$$G_i/G_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Let
$$H_i = H \cap G_i$$
, $i = 0, ..., n$

$$H_0 = H \cap G_0, H_1 = H \cap G_1, \dots, H_n = H \cap G_n = \{e\}$$

Each H_i is a subgroup of (G,*).

1.
$$G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\}$$
 is hold

$$2.H_{i+1}\Delta H_i \quad \forall i=0,\ldots,n-1, \qquad H_i=H\cap G_i, \ H_{i+1}=H\cap G_{i+1}, \text{ since } G_{i+1}\Delta G_i \Longrightarrow H_{i+1}\Delta H_i$$

3. To prove
$$H_i/H_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

$$0,\ldots,n-1.$$
 Let $f_i\colon H_i \to {G_i}/{G_{i+1}}$, $i=0,\ldots,n-1$ such that $f_i(x)=x*G_{i+1} \forall x\in H_i\subseteq G_i.$

To prove f_i is a homomorphism,

$$f_i(x * y) = f_i(x) \otimes f_i(y)$$
?

$$f_i(x * y) = x * y * G_{i+1} = (x * G_{i+1}) \otimes (y * G_{i+1}) =$$

 $f_i(x) \otimes f_i(y)$

So, f_i is a homomorphism

 f_i is onto?

$$R_{f_i} = \{f_i(x) : x \in H_i\} = \{x * G_{i+1} : x \in H_i\} = f_i(H_i)$$

$$\neq \frac{G_i}{G_{i+1}}$$

$$f_i(H_i) \subseteq {^G_i}/_{G_{i+1}} \Longrightarrow f_i$$
 is not onto

$$H_i/\ker f_i \cong f_i(H_i)$$
 (by theorem of homomorphism)

$$\ker f_i = \{x \in H_i : f_i(x) = e'\} = \{x \in H_i : x * G_{i+1} = G_{i+1}\}$$

$$= \{x \in H_i : x \in G_{i+1}\} = \{x \in H_i : x \in H \cap G_{i+1}\}$$

$$= H_{i+1}$$

so,
$$\binom{H_i}{H_{i+1}}$$
, \otimes \cong $(f_i(H_i), \otimes)$

$$f_i(H_i) \subseteq {^G_i}/_{G_{i+1}}$$
 and ${^G_i}/_{G_{i+1}}$ is a commutative

Hence, $f_i(H_i)$ is a commutative

Therefore, H_i/H_{i+1} is a commutative

So, (H,*) is a solvable \blacksquare

Theorem(4-6):

Let $H\Delta G$ and G is a solvable, then G/H is a solvable.

Theorem(4-7):

Let $H\Delta G$ and both H, G/H are solvable, then (G,*) is a solvable.

Proof: since (H,*) is a solvable \Longrightarrow

there is a finite collection of subgroups of (G,*), H_0, H_1, \dots, H_n such that

$$1. G = H_0 \supset H_1 \supset \cdots \supset H_{n-1} \supset H_n = \{e\},\$$

$$2.H_{i+1}\Delta H_i \quad \forall i=0,\ldots,n-1,$$

3.
$$H_i/H_{i+1}$$
 is a commutative group $\forall i = 0, ..., n-1$.

Since
$$(^G/_H, \otimes)$$
 is a solvable \Rightarrow

there is a finite collection of subgroups of (G,*), $\frac{G_0}{H}, \frac{G_1}{H}, \dots, \frac{G_r}{H}$ such that

$$1.\frac{G}{H} = \frac{G_0}{H} \supset \frac{G_1}{H} \supset \cdots \supset \frac{G_r}{H} = \{e\} = H,$$

$$2.\frac{G_{i+1}}{H}\Delta \frac{G_i}{H} \quad \forall i=0,\dots,r-1,$$

3.
$$\frac{G_i}{H} / \frac{G_{i+1}}{H}$$
 is a commutative group $\forall i = 0, ..., r-1$.

To prove (G,*) is a solvable group.

$$\frac{G}{H} = \frac{G_0}{H} \Longrightarrow G = G_0$$

$$\frac{G_r}{H} = H \Longrightarrow G_r = \{e\} \text{ or } G_r = H$$

$$H\Delta G_r \Longrightarrow H \subseteq G_r \Longrightarrow G_r = H$$

So, there is a finite collection $G_0, G_1, ..., G_r = H_0, H_1, ..., H_n$ such that

$$1. G = G_0 \supset G_1 \supset \cdots \supset G_r = H = H_0 \supset H_1 \supset \cdots \supset H_n = \{e\}.$$

2. To prove
$$G_{i+1}\Delta G_i \quad \forall i=0,\ldots,r-1$$

Let $x \in G_i$ and $a \in G_{i+1}$ to prove $x * a * x^{-1} \in G_{i+1}$

$$x \in G_i \Longrightarrow x * H \in \frac{G_i}{H}$$

$$a \in G_{i+1} \Longrightarrow a * H \in \frac{G_{i+1}}{H}$$

$$\frac{G_{i+1}}{H} \Delta \frac{G_i}{H} \Longrightarrow (x * H) \otimes (a * H) \otimes (x * H)^{-1} \in \frac{G_{i+1}}{H}$$

$$\Rightarrow (x * a * x^{-1}) * H \in \frac{G_{i+1}}{H} \Rightarrow x * a * x^{-1} \in G_{i+1}$$
$$\Rightarrow G_{i+1} \Delta G_i$$

3. To prove $\frac{G_i}{G_{i+1}}$ is a commutative group $\forall i = 0, ..., r-1$

$$\frac{\frac{G_i}{H}}{\frac{G_{i+1}}{H}}$$
 is a commutative group and $\frac{\frac{G_i}{H}}{\frac{G_{i+1}}{H}} \cong \frac{G_i}{G_{i+1}} \; (\frac{\frac{G}{H}}{\frac{K}{H}} \cong \frac{G}{K})$

$$\Longrightarrow \frac{G_i}{G_{i+1}}$$
 is a commutative group

Therefore, (G,*) is a solvable group \blacksquare

Exercises(4-8);

- Show that every *p*-group is a solvable group.
- Show that (S_4, \circ) is a solvable group.
- Show that $(Z_4, +_4)$ is a solvable group.
- Show that $(Z_8, +_8)$ is a solvable group.

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

- Show that $(Z_5, +_5)$ is a solvable group.
- Show that $(Z_6, +_6)$ is a solvable group.
- Show that $(Z_{12}, +_{12})$ is a solvable group.
- Show that $(Z_{24}, +_{24})$ is a solvable group.

5 Some Applications of Group Theory

5.1 Cayley Theorem

Theorem(5-1-1): (Cayley Theorem)

Every group is an isomorphic to a group of permutations.

This means if (G,*) is any group, then $(G,*)\cong (F_G,\circ)$, where $F_G=\{f_a\colon a\in G\}, f_a\colon G\longrightarrow G\ni f_a(x)=a*x, \forall x\in G.$

Proof: define $g: G \to F_G$ by $g(a) = f_a, \forall a \in G$

To prove g is a homomorphism, one to one and onto.

1. g is a homomorphism, let $a, b \in G$

$$g(a * b) = f_{a*b} = f_a \circ f_b = g(a) \circ g(b) \Longrightarrow g$$
 is a homomorphism.

2. g is a one to one, let g(a) = g(b), $\forall a, b \in G$

$$\Rightarrow f_a = f_b \Rightarrow f_a(x) = f_b(x) \Rightarrow a * x = b * x \Rightarrow a = b$$

 \Rightarrow g is a one to one.

3. *g* is a onto,
$$g(G) = \{g(a) : a \in G\} = \{f_a : a \in G\} = F_G$$

Therefore, $G \cong F_G \blacksquare$

Corollary(5-1-2):

Every finite group (G,*) of order n is an isomorphic to (S_n,\circ) .

Example(5-1-3):

Consider the following Cayley table of a group $(G = \{e, a, b, c\}, *)$

*	е	а	b	С
e	e	а	b	С
а	а	e	С	b
b	b	С	e	а
С	С	b	а	e

Show that (G,*) is an isomorphic to a subgroup of (S_4,\circ) .

Solution:

$$f_e = \begin{pmatrix} e & a & b & c \\ e & a & b & c \end{pmatrix}, \qquad f_1 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} = (1)(2)(3)(4) = (1)$$

$$f_a = \begin{pmatrix} e & a & b & c \\ a & e & c & b \end{pmatrix}, \quad f_2 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \end{pmatrix} = (12)(34)$$

$$f_b = \begin{pmatrix} e & a & b & c \\ b & c & e & a \end{pmatrix}, \quad f_3 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 4 & 1 & 2 \end{pmatrix} = (13)(24)$$

$$f_c = \begin{pmatrix} e & a & b & c \\ c & b & a & e \end{pmatrix}, \quad f_4 = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 2 & 1 \end{pmatrix} = (14)(23)$$

Hence, (G,*) is an isomorphic to the subgroup of (S_4,\circ) :

$$\{(1), (12)(34), (13)(24), (14)(23)\}.$$

Example(5-1-4): (Homework)

Let $(G = \{1, -1, i, -i\}, \cdot)$ be a group, apply Cayley Theorem on G.

Example(5-1-5): (Homework)

Show that $(Z_3, +_3)$ is an isomorphic to a subgroup of (S_3, \circ) .

Exercises(5-1-6):

- Apply Cayley Theorem on $(Z_4, +_4)$.
- Apply Cayley Theorem on $(G = \{\pm 1, \pm i, \pm j, \pm k\}, \cdot)$.
- Apply Cayley Theorem on $(G = \{1, -1\}, \cdot)$.

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

• Apply Cayley Theorem on $(G = \{A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, C = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, D = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \cdot).$

5.2 Direct Product

<u>Definition(5-2-1):</u>

Let (H,*) and (K,*) be two normal subgroups of (G,*), then (G,*) is called an internal direct product of H and K (G is a decomposition by H and K) if and only if G = H * K and $H \cap K = \{e\}$.

Example(5-2-2):

Consider the following Cayley table of a group $(G = \{e, a, b, c\}, *)$, $a^2 = b^2 = c^2 = e$

*	e	а	b	С
e	е	а	b	С
а	a	е	С	b
b	b	С	е	а
С	С	b	а	е

Let $H = \{e, a\}$ and $K = \{e, b\}$, show that $G = H \otimes K$ is a decomposition by H and K.

Solution: $H, K\Delta G$ since G is a commutative group

$$H * K = \{e, a, b, c\} \text{ and } H \cap K = \{e\}$$

Hence, $G = H \otimes K$ is decomposition by H and K.

Example(5-2-3):

Let (G,*) be any group with H=G and $K=\{e\}$, show that

 $G = H \otimes K$ is a decomposition by H and K.

Solution: H, $K\Delta G$

$$H * K = G * \{e\} = G$$

$$H \cap K = G \cap \{e\} = \{e\}$$

Therefore, $G = H \otimes K$ is a decomposition by H and K.

Example(5-2-4):

Let $(Z_4, +_4)$ be a group. Is Z_4 has a proper decomposition.

Solution: the subgroups of Z_4 are Z_4 , $\{0,2\}$, $\{0\}$

Let
$$H = Z_4$$
 and $K = \{0,2\}$

$$H \bigotimes_4 K = Z_4 \bigotimes_4 \{0,2\} = Z_4$$

$$H \cap K = \mathbb{Z}_4 \cap \{0,2\} = \{0,2\}$$

So,
$$Z_4 \neq Z_4 \otimes \{0,2\}$$

Let
$$H = \{0\}$$
 and $K = \{0,2\}$

$$H \otimes_4 K = K \neq \mathbb{Z}_4$$

Therefore, Z₄ has no proper decomposition.

<u>Theorem(5-2-5):</u>

Let H and K be two subgroups of G and $G = H \otimes K$, then $G/_H \cong K$ and $G/_K \cong H$.

Proof:

Since
$$G = H \otimes K \Longrightarrow H * K = G$$
 and $H \cap K = \{e\}$

$$G/_H = H * K/_H$$
 and $H * K/_H \cong K/_{H \cap K}$ (by second theorem of isomorphic)

$$G/_H \cong K/_{\{e\}} \Longrightarrow G/_H \cong K$$
 and

$$G/_K = H * K/_K$$
 and $H * K/_K \cong H/_{H \cap K}$

$$^{\mathrm{G}}/_{K}\cong ^{\mathrm{H}}/_{\{e\}}\Longrightarrow ^{\mathrm{G}}/_{K}\cong H\blacksquare$$

<u>Definition(5-2-6):</u>

Let $(G_1,*)$ and (G_2,\circ) be two groups, define $G_1 \times G_2 = \{(a,b): a \in G_1, b \in G_2\}$ such that $(a,b) \odot (c,d) = (a*c,b\circ d) \ni a,c \in G_1,b,d \in G_2$. Then $(G_1 \times G_2,\odot)$ is a group which is called an external direct product of G_1 and G_2 .

Example(5-2-7): (Homework)

Show that $(G_1 \times G_2, \odot)$ is a group.

Example(5-2-8):

Let
$$G_1 = (Z_3, +_3)$$
 and $G_2 = (Z_2, +_2)$. Find $G_1 \times G_2$.

Solution:

$$G_1 \times G_2 = Z_3 \times Z_2$$

= $\{(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)\}$
 $(1,1)\odot(2,1) = (0,0)$
 $o(Z_3 \times Z_2) = o(Z_3), o(Z_2) = 6.$

Theorem(5-2-9):

Let $(G_1,*)$ and (G_2,\circ) be two groups, then

- 1. $(G_1 \times G_2, \odot)$ is an abelian if and only if both G_1 and G_2 are abelian.
- $2. G_1 \times \{e_2\} \triangle G_1 \times G_2.$
- $3.\{e_1\} \times G_2 \triangle G_1 \times G_2.$
- $4. G_1 \cong G_1 \times \{e_2\}.$
- $5. G_2 \cong \{e_2\} \times G_2.$

Proof:

1. (\Longrightarrow) suppose that $G_1 \times G_2$ is an abelian, to prove G_1 and G_2 are abelian.

Let
$$(a, e_2), (b, e_2) \in G_1 \times G_2 \ni a, b \in G_1, e_2 \in G_2$$

Since $G_1 \times G_2$ is an abelian, then

$$(a, e_2) \odot (b, e_2) = (b, e_2) \odot (a, e_2)$$

$$(a*b,e_2) = (b*a,e_2) \Longrightarrow a*b = b*a$$

Hence, $(G_1,*)$ is an abelian.

Similarly that $(G_2,*)$ is an abelian.

 (\Leftarrow) suppose that $(G_1,*)$ and (G_2,\circ) are abelian, to prove $G_1 \times G_2$ is an abelian.

Let
$$(a,b), (c,d) \in G_1 \times G_2$$
, to prove $(a,b) \odot (c,d) =$
 $(c,d) \odot (a,b)$

$$(a,b)\odot(c,d) = (a*c,b*d)$$

$$(c,d)\odot(a,b) = (c*a,d*b)$$

$$a * c = c * a$$
 (G_1 is an abelian)

$$b * d = d * b$$
 (G_2 is an abelian)

$$\Rightarrow$$
 $(a,b)\odot(c,d) = (c,d)\odot(a,b)$

Therefore, $G_1 \times G_2$ is an abelian.

2. To prove
$$G_1 \times \{e_2\} \triangle G_1 \times G_2$$

$$G_1 \times \{e_2\} = \{(a, e_2) : a \in G_1\} \neq \emptyset$$

To prove $(G_1 \times \{e_2\}, \bigcirc)$ is a subgroup of $G_1 \times G_2$

Let
$$(a, e_2), (b, e_2) \in G_1 \times \{e_2\}$$

$$(a, e_2) \odot (b, e_2)^{-1} = (a, e_2) \odot (b^{-1}, e_2^{-1}) = (a * b^{-1}, e_2)$$

So, $(G_1 \times \{e_2\}, \odot)$ is a subgroup of $G_1 \times G_2$.

To prove
$$G_1 \times \{e_2\} \triangle G_1 \times G_2$$

Let
$$(x, y) \in G_1 \times G_2$$
 and $(a, e_2) \in G_1 \times \{e_2\}$

To prove
$$(x, y) \odot (a, e_2) \odot (x, y)^{-1} \in G_1 \times \{e_2\}$$

$$(x * a * x^{-1}, y * e_2 * y^{-1}) = (x * a * x^{-1}, e_2) \in G_1 \times \{e_2\}$$

Hence, $G_1 \times \{e_2\} \triangle G_1 \times G_2$.

3. (Homework).

4. To prove $G_1 \cong G_1 \times \{e_2\}$.

Proof:

Define
$$f: (G_1, *) \longrightarrow (G_1 \times \{e_2\}, \bigcirc) \ni f(a) = (a, e_2)$$

f is a map ? let $a_1, a_2 \in G_1$ and $a_1 = a_2 \Longrightarrow (a_1, e_2) =$ $(a_2, e_2) \Longrightarrow f(a_1) = f(a_2)$, so f is a map

f is an one to one ? let $f(a_1) = f(a_2) \Rightarrow (a_1, e_2) = (a_2, e_2) \Rightarrow a_1 = a_2$, so f is a one to one.

f is a homomorphism ? $f(a*b) = (a*b, e_2) = (a, e_2) \odot (b, e_2) = f(a) \odot f(b)$, so f is a homomorphism

f is an onto ? $R_f = \{f(a) : a \in G_1\} = \{(a, e_2) : a \in G_1\} = G_1 \times \{e_2\}$ so f is an onto.

Therefore, $(G_1,*) \cong (G_1 \times \{e_2\}, \odot)$

5. (Homework)

<u>Theorem(5-2-10):</u>

Let $(G_1,*)$ and (G_2,\circ) be two p-groups, then $(G_1 \times G_2, \odot)$ is a p-group.

Proof:

Since G_1 is p-group $\Longrightarrow o(G_1) = p^{k_1}$, $k_1 \in Z^+$

Since G_2 is p-group $\implies o(G_2) = p^{k_2}$, $k_2 \in Z^+$

$$o(G_1 \times G_2) = o(G_2) \times o(G_1) = p^{k_1} \times p^{k_2}$$
$$= p^{k_1 + k_2}, k_1 + k_2 \in Z^+$$

Therefore, $G_1 \times G_2$ is a *p*-group

Exercises(5-2-11):

• Let $H = \{0,2,4\}$ and $K = \{0,3\}$ are subgroups of $(Z_6, +_6)$, show that $Z_6 = H \otimes K$ is a decomposition.

Prof. Dr. Najm Al-Seraji, Applications of Group Theory, 2023

- Let $H = \{0\}$, show that $Z_7 = H \otimes Z_7$ is a decomposition.
- Find $Z_3 \times Z_7$.
- Is $S_3 \times Z_2$ an abelian?
- Is $G_s \times Z_2$ an abelian?
- Is $S_3 \times G_S$ an abelian?
- Is $\{\pm 1, \pm i\} \times Z_2$ an abelian?
- Is $Z_4 \times Z_8$ a *p*-group?
- Is $Z_5 \times Z_{25}$ a *p*-group?
- Is $Z_{11} \times Z_{121}$ a *p*-group?
- Is $Z_7 \times Z_{49}$ a *p*-group?
- Is $Z_{27} \times Z_3$ a *p*-group?
- Is $Z_5 \times Z_{125}$ a *p*-group?
- Is $Z_2 \times Z_{64}$ a *p*-group?
- Is $Z_4 \times Z_{128}$ a *p*-group?
- Is $\mathbb{Z}_9 \times \mathbb{Z}_{81}$ a *p*-group?
- Is $Z_{27} \times Z_{81}$ a *p*-group?
- Is $Z_{128} \times Z_8$ a *p*-group?
- Is $Z_2 \times Z_{256}$ a *p*-group?