
ESCI 341 – Atmospheric Thermodynamics 

Lesson 5 – Enthalpy and Specific Heat 
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ENTHALPY 

� U and V are not the only state variables that we can use to characterize a 

thermodynamic system.  We can choose other variables that can be related to U 

and V, such as T, p, or S. 

� One commonly used state variable is called enthalpy, and is defined as 

H ≡≡≡≡ U + pV. 

� The differential of H is given as dH = dU + pdV + Vdp.  This makes it possible to 

write the first law of thermodynamics as 

VdpdQdH += .                                                    (1) 

 

WHY BOTHER WITH ENTHALPY? 

� The reason enthalpy is convenient to use is that for constant pressure processes, 

dp = 0 and so dH = dQ. 

ο Since many thermodynamic processes in the atmosphere occur at constant 

pressure, change in enthalpy and heat are equivalent and are used 

interchangeably in such processes. 

� From the first form of the first law, dU = dQ – pdV, we see that at constant 

volume, dU = dQ. 

ο For constant volume processes, heat and change in internal energy are 

interchangeable. 

� It is worth repeating the following: 

ο For constant pressure processes, heat and enthalpy change are equivalent. 

ο For constant volume processes, heat and internal energy change are 

equivalent. 
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� One other important aspect of enthalpy is that in an isobaric (constant pressure) 

process, 

dW dU dH= − , 

which states that the  work is the difference in the changes of internal energy 

and enthalpy. 

 

HEAT CAPACITIES AND SPECIFIC HEATS 

� Heat capacity refers to the amount of heat required to raise the temperature of a 

substance by one degree.  Heat capacity is defined in terms of either a constant 

volume process or a constant pressure process,  
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� From the two forms of the first law we can show that 
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so that the definitions for heat capacity can also be written as 
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� The units of heat capacity are J K
−−−−1

. 

� Heat capacity is an extensive property.  Its intensive counterpart is called 

specific heat, and is defined as 
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� The units of specific heat are J K
−−−−1

 kg
−−−−1

. 

� Heat capacities and specific heats are not constant, but are functions of T and p. 

 

RELATION BETWEEN Cv AND Cp 

� To see the relation between Cv and Cp we start with the relation 
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From the definition of enthalpy, 

H U pV= + , 

we take the partial derivative with respect to T at constant pressure to get 
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Substituting (9) into (8) we get 

 

p v

p p v

U V U
C C p

T T T

∂ ∂ ∂     
− = + −     

∂ ∂ ∂     
.                                       (10)                        

 

The differential of U is 
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Substituting this into (10) gives 
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In terms of specific heats this is 
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ο ( )
T

U V∂ ∂  [or ( )
T

u α∂ ∂ ] is called the internal pressure, and is due to forces 

between the molecules of the substance. 

� For gases, Cp is greater than Cv.  This is because in a constant pressure process 

some of the heat added will be used to do work as the system expands, so the 

internal energy cannot increase as much as in a constant volume process. 

 

SPECIFIC HEATS FOR IDEAL GASES 

� Recall that the specific heat at constant volume was defined as 
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ο Since the internal energy and enthalpy of an ideal gas depend only on 

temperature, then for an ideal gas we don’t have to write the specific heats as 

partial derivatives, but can instead use full derivatives 
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ο From the expressions for the internal energy of ideal gases, we then get that 
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� The expression relating the specific heats at constant pressure and at constant 

volume is also greatly simplified for an ideal gas.  The general expression 

[Eqn. (13)] becomes, for an ideal gas,  

Rcc vp
′=− ,                                                      (14) 

which tells us that 
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� 99% of the atmosphere is composed of diatomic molecules (N2 and O2), and has 

a specific gas constant of 287.1 J-kg
−−−−1

-K
−−−−1

.  This leads to values of cv and cp of 

718 J-kg
−−−−1

-K
−−−−1

 and 1005 J-kg
−−−−1

-K
−−−−1

.  These values are extremely close to the 

measured values for the atmosphere. 

 

THE FIRST LAW OF THERMODYNAMICS FOR IDEAL GASES 

� The specific heats for ideal gasses are 
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Using these expressions in the first law of thermodynamics results in the 

following two forms for the first law 
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   First Law of Thermodynamics for Ideal Gas 

� We are often most interested in how the thermodynamic variables change with 

time.  By dividing the first law by dt we get 
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  First Law of Thermodynamics for Ideal Gas 

� In meteorology, the most common form of the first law used the top equation 

above.  There are many different symbols used for the heating term.  Some 

common ways that you will see the first law written in other textbooks are 
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BEWARE:  Not all textbooks use consistent notation.  Many (such as Bluestein) 

use upper case “C” for specific heat. 

� The first law is often referred to as the thermodynamic equation or 

thermodynamic energy equation. 

 

EXERCISES 

1.  Show that for an ideal gas 
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reduces to 

Rcc vp
′=− . 

 

 

2.  Show that for an ideal gas Cp – Cv = nR. 


