
Mobile Computing
Mobile Development

Introduction to Activities

Outline
Introduction to activities

The concept of activities

Configuring the manifest

Declare intent filter

Declare permission

The activity life cycle

Managing the activity life cycle

Introduction to Activities

The Activity class is a crucial component of an Android app, and the way activities are

launched and put together is a fundamental part of the platform's application model.

Unlike programming paradigms in which apps are launched with a main() method, the

Android system initiates code in an Activity instance by invoking specific callback methods

that correspond to specific stages of its lifecycle.

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html

The Concept of Activities
The mobile-app experience differs from its desktop counterpart in that a user's interaction with
the app doesn't always begin in the same place. Instead, the user journey often begins non-
deterministically.

For instance, if you open an email app from your home screen, you might see a list of emails. By
contrast, if you are using a social media app that then launches your email app, you might go
directly to the email app's screen for composing an email.

The Activity class is designed to facilitate this paradigm. When one app invokes another, the
calling app invokes an activity in the other app, rather than the app as an atomic whole.

In this way, the activity serves as the entry point for an app's interaction with the user. You
implement an activity as a subclass of the Activity class.

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html

The mobile-app experience differs from its desktop counterpart in that a user's interaction with
the app doesn't always begin in the same place. Instead, the user journey often begins non-
deterministically.

For instance, if you open an email app from your home screen, you might see a list of emails.
By contrast, if you are using a social media app that then launches your email app, you might
go directly to the email app's screen for composing an email.

Most apps contain multiple screens, which means they comprise multiple activities. Typically,
one activity in an app is specified as the main activity, which is the first screen to appear when
the user launches the app.

Each activity can then start another activity in order to perform different actions.

For example, the main activity in a simple e-mail app may provide the screen that shows an e-
mail inbox.

From there, the main activity might launch other activities that provide screens for tasks like
writing e-mails and opening individual e-mails.

To use activities in your app, you must register
information about them in the app’s manifest, and you
must manage activity lifecycles appropriately.

Configuring the manifest

To declare your activity, open your manifest file and add
an <activity> element as a child of the <application> element. For
example:

<manifest ... >
<application ... >

<activity android:name=".ExampleActivity" />
...

</application ... >
...

</manifest >

https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/application-element.html

The only required attribute for this element is android:name, which
specifies the class name of the activity.

You can also add attributes that define activity characteristics such as
label, icon, or UI theme.

https://developer.android.com/guide/topics/manifest/activity-element.html#nm

Declare Intent Filters

Intent filters are a very powerful feature of the Android platform. They
provide the ability to launch an activity based not only on
an explicit request, but also an implicit one.

For example, an explicit request might tell the system to “Start the Send
Email activity in the Gmail app". By contrast, an implicit request tells the
system to “Start a Send Email screen in any activity that can do the job."

When the system UI asks a user which app to use in performing a task,
that’s an intent filter at work.

https://developer.android.com/guide/components/intents-filters.html

You can take advantage of this feature by declaring an <intent-
filter> attribute in the <activity> element.

The definition of this element includes an <action> element and,
optionally, a <category> element and/or a <data> element.

These elements combine to specify the type of intent to which your
activity can respond.

For example, the following code snippet shows how to configure an
activity that sends text data, and receives requests from other activities
to do so:

https://developer.android.com/guide/topics/manifest/intent-filter-element.html
https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/action-element.html
https://developer.android.com/guide/topics/manifest/category-element.html
https://developer.android.com/guide/topics/manifest/data-element.html

<activity android:name=".ExampleActivity"
android:icon="@drawable/app_icon">

<intent-filter>
<action android:name="android.intent.action.SEND" />
<category android:name="android.intent.category.DEFAULT" />
<data android:mimeType="text/plain" />

</intent-filter>
</activity>

In this example, the <action> element specifies that this activity sends data.

Declaring the <category> element as DEFAULT enables the activity to receive

launch requests.

The <data> element specifies the type of data that this activity can send.

The following code snippet shows how to call the activity described above:

https://developer.android.com/guide/topics/manifest/action-element.html
https://developer.android.com/guide/topics/manifest/category-element.html
https://developer.android.com/guide/topics/manifest/data-element.html

// Create the text message with a string

Intent sendIntent = new Intent();

sendIntent.setAction(Intent.ACTION_SEND);

sendIntent.setType("text/plain");

sendIntent.putExtra(Intent.EXTRA_TEXT, textMessage);

// Start the activity

startActivity(sendIntent);

Declare permissions
You can use the manifest's <activity> tag to control which apps can start a

particular activity.

A parent activity cannot launch a child activity unless both activities have the

same permissions in their manifest.

If you declare a <uses-permission> element for a parent activity, each child

activity must have a matching <uses-permission> element.

For example, if your app wants to use a hypothetical app named SocialApp to

share a post on social media, SocialApp itself must define the permission that an

app calling it must have:

https://developer.android.com/guide/topics/manifest/activity-element.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html
https://developer.android.com/guide/topics/manifest/uses-permission-element.html

<manifest>
<activity android:name="...."

android:permission=”com.google.socialapp.permission.SHARE_POST”
/>

Then, to be allowed to call SocialApp, your app must match the permission set
in SocialApp's manifest:

<manifest>
<uses-permission

android:name="com.google.socialapp.permission.SHARE_POST" />
</manifest>

The Activity Lifecycle

As a user navigates through, out of, and back to your app, the Activity instances in your

app transition through different states in their lifecycle.

The Activity class provides a number of callbacks that allow the activity to know that a

state has changed: that the system is creating, stopping, or resuming an activity, or

destroying the process in which the activity resides.

Within the lifecycle callback methods, you can declare how your activity behaves when

the user leaves and re-enters the activity.

For example, if you're building a streaming video player, you might pause the video and

terminate the network connection when the user switches to another app. When the user

returns, you can reconnect to the network and allow the user to resume the video from

the same spot.

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html

In other words, each callback allows you to perform specific

work that's appropriate to a given change of state.

Doing the right work at the right time and handling transitions

properly make your app more robust and performant.

For example, good implementation of the lifecycle callbacks

can help ensure that your app avoids:

Crashing if the user receives a phone call or switches to another app
while using your app.

Consuming valuable system resources when the user is not actively
using it.

Losing the user's progress if they leave your app and return to it at a
later time.

Crashing or losing the user's progress when the screen rotates between
landscape and portrait orientation.

Managing the Activity life cycle

Over the course of its lifetime, an activity goes through a
number of states. You use a series of callbacks to handle
transitions between states.

These callbacks are given below:

onCreate()

You must implement this callback, which fires when the system creates
your activity.

Your implementation should initialize the essential components of your
activity:

For example, your app should create views and bind data to lists here.
Most importantly, this is where you must call setContentView() to
define the layout for the activity's user interface.

When onCreate() finishes, the next callback is always onStart().

https://developer.android.com/reference/android/app/Activity.htmlsetContentView(android.view.View)
https://developer.android.com/reference/android/app/Activity.htmlonCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity.htmlonStart()

onStart()

As onCreate() exits, the activity enters the Started state, and the activity becomes

visible to the user.

This callback contains what amounts to the activity’s final preparations for

coming to the foreground and becoming interactive.

onResume()

The system invokes this callback just before the activity starts interacting with

the user.

At this point, the activity is at the top of the activity stack, and captures all user

input.

Most of an app’s core functionality is implemented in the onResume() method.

The onPause() callback always follows onResume().

https://developer.android.com/reference/android/app/Activity.htmlonCreate(android.os.Bundle)
https://developer.android.com/reference/android/app/Activity.htmlonResume()
https://developer.android.com/reference/android/app/Activity.htmlonPause()
https://developer.android.com/reference/android/app/Activity.htmlonResume()

onPause()
The system calls onPause() when the activity loses focus and enters a Paused state.

This state occurs when, for example, the user taps the Back or Recents button.

When the system calls onPause() for your activity, it technically means your activity is still

partially visible, but most often is an indication that the user is leaving the activity, and the

activity will soon enter the Stopped or Resumed state.

An activity in the Paused state may continue to update the UI if the user is expecting the UI to

update. Examples of such an activity include one showing a navigation map screen or a media

player playing.

Even if such activities lose focus, the user expects their User Interface (UI) to continue

updating.

You should not use onPause() to save application or user data, make network calls, or execute

database transactions.

Once onPause() finishes executing, the next callback is either onStop() or onResume(),

depending on what happens after the activity enters the Paused state.

https://developer.android.com/reference/android/app/Activity.htmlonPause()
https://developer.android.com/reference/android/app/Activity.htmlonPause()
https://developer.android.com/reference/android/app/Activity.htmlonPause()
https://developer.android.com/reference/android/app/Activity.htmlonPause()
https://developer.android.com/reference/android/app/Activity.htmlonStop()
https://developer.android.com/reference/android/app/Activity.htmlonResume()

onStop()
The system calls onStop() when the activity is no longer visible to the user. This may happen

because the activity is being destroyed, a new activity is starting, or an existing activity is

entering a Resumed state and is covering the stopped activity.

In all of these cases, the stopped activity is no longer visible at all.

The next callback that the system calls is either onRestart(), if the activity is coming back to

interact with the user, or by onDestroy() if this activity is completely terminating.

onRestart()
The system invokes this callback when an activity in the Stopped state is about to

restart. onRestart() restores the state of the activity from the time that it was stopped.

This callback is always followed by onStart().

https://developer.android.com/reference/android/app/Activity.htmlonStop()
https://developer.android.com/reference/android/app/Activity.htmlonRestart()
https://developer.android.com/reference/android/app/Activity.htmlonDestroy()
https://developer.android.com/reference/android/app/Activity.htmlonRestart()
https://developer.android.com/reference/android/app/Activity.htmlonStart()

onDestroy()

The system invokes this callback before an activity is destroyed.

This callback is the final one that the activity receives.

onDestroy() is usually implemented to ensure that all of an activity’s

resources are released when the activity, or the process containing it, is

destroyed.

https://developer.android.com/reference/android/app/Activity.htmlonDestroy()

Figure 1. A simplified illustration of the activity lifecycle.

Using Mobile Device for running your app

Using Hardware devices: Android-powered device enable to
develop and debug your Android applications just as you would
on the emulator.

Declare your application as "debuggable" in your Android
Manifest. When using Eclipse, you can skip this step

Enable USB debugging on your device.

In Android 4.0 and newer, it's in Settings > Developer options.

On Android 4.2 and newer, Developer options is hidden by default. To
make it available, go to Settings > About phone and tap Build number
seven times. Return to the previous screen to find Developer options.

In Eclipse, run or debug your application as usual. You will be presented
with a Device Chooser dialog that lists the available emulator(s) and
connected device(s). Select the device upon which you want to install and
run the application.

http://developer.android.com/tools/device.html

http://developer.android.com/tools/device.html

Thank you

