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11 .Numerical analysis and curve fitting
11.5 Characteristic Polynomial and Roots

 Polynomial comes from the Greek poly, "many" and medieval Latin binomium,
"binomial".

 Forming a sum of several terms produces a polynomial. For example, the following is a
polynomial:

3𝑥ଶ − 5𝑥 + 4

 It consists of three terms: the first is degree two, the second is degree one, and the third
is degree zero.
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11 .Numerical analysis and curve fitting
11.6 Polynomials in MATLAB

 Represented by a row vector in which the elements are the coefficients as
[𝑎  𝑎ିଵ …  𝑎ଶ 𝑎ଵ 𝑎]

 The 𝑎୧ elements of this vector are the coefficients of the polynomial in descending order.
 Must include all coefficients, even if 0:

Examples:-

The polynomial

1) 𝑠ଷ – 6𝑠ଶ – 72s – 27 is represented in MATLAB software as :

>>p = [1 -6 -72 -27]

2) 8x + 5 , >>p = [8 5]

3) 6𝑥ଶ – 150 , >>h = [6 0 -150]
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11 .Numerical analysis and curve fitting
11.7 Roots of Polynomials

 We can find the roots of any polynomial with the roots(p) function where p is a row

vector containing the polynomial coefficients in descending order.

Example1:

Find the roots of the polynomial
𝑝ଵ 𝑥  = 𝑥ସ – 10𝑥ଷ + 35𝑥ଶ – 50𝑥 +24 

Solution:
The roots are found with the following two statements. We have denoted the polynomial as
p1,and the roots as roots_ p1.
>> p1=[1 -10 35 -50 24] % Specify the coefficients of p1(x)
P1=

1 -10 35 -50 24
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11 .Numerical analysis and curve fitting
11.7 Roots of Polynomials

>> roots_p1=roots(p1) % Find the roots of p1(x)

roots_p1 =

4.0000

3.0000

2.0000

1.0000

We observe that MATLAB displays the polynomial coefficients as a row vector, and the

roots as a column vector.

Numerical analysis 
2nd Class



١٠/١٠/١٤٤٣

٣

5

11 .Numerical analysis and curve fitting
11.7 Roots of Polynomials

Example2:

Find the roots of the polynomial
𝑝ଶ 𝑥  = 𝑥ହ –7𝑥ସ + 16𝑥ଶ – 25𝑥 +52

Solution:
There is no cube term; therefore, we must enter zero as its coefficient. The roots are found
with the statements below where we have defined the polynomial as p2, and the roots of
this polynomial as roots_ p2.
>> p٢=[1 -6 0 16 25 52]
P2=

1 -7 0 16 25 52
>> roots_ p2=roots(p2)
roots_ p2 =
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11 .Numerical analysis and curve fitting
11.7 Roots of Polynomials

>> roots_ p2=roots(p2)

roots_ p2 =

6.5014

2.7428

-1.5711

-0.3366 + 1.3202i

-0.3366 - 1.3202i

The result indicates that this polynomial has three real roots, and two complex roots.
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11 .Numerical analysis and curve fitting
11.8 Polynomial Construction from Known Roots

We can compute the coefficients of a polynomial from a given set of roots with the poly(r)

function where r is a row vector containing the roots.

It is known that the roots of a polynomial are 1,2,3 and 4. Compute the coefficients of

this polynomial.
Solution:

We first define a row vector, say r3, with the given roots as elements of this vector;

then, we find the coefficients with the poly(r) function as shown below.
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11 .Numerical analysis and curve fitting
11.8 Polynomial Construction from Known Roots

>>r3=[1 2 3 4] % Specify the roots of the polynomial

r3 =

1 2 3 4

>>poly_r3=poly(r3) % Find the polynomial coefficients

poly_r3 =

1 -10 35 -50 24

We observe that these are the coefficients of the polynomial p1(x) of Example1.
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11 .Numerical analysis and curve fitting
11.8 Polynomial Construction from Known Roots
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Example4:

It is known that the roots of a polynomial are –1, –2, –3, 4 + j5, and 4 – j5.Find the

coefficients of this polynomial.

Solution:

We form a row vector, say r4, with the given roots, and we find the polynomial coefficients

with the poly(r) function as shown below.

>> r4=[ -1 -2 -3 4+5j 4-5j ]
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11 .Numerical analysis and curve fitting
11.8 Polynomial Construction from Known Roots
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Example4:

>> r4=[ -1 -2 -3 4+5j 4-5j ]

r4 =

Columns 1 through 4

-1.0000 + 0.0000i -2.0000 + 0.0000i -3.0000 + 0.0000i 4.0000 + 5.0000i

Column 5

4.0000 - 5.0000i

>> poly_r4=poly(r4)
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11 .Numerical analysis and curve fitting
11.8 Polynomial Construction from Known Roots
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Example4:

>> poly_r4=poly(r4)

poly_r4 =

1 -2 4 164 403 246

Therefore, the polynomial is

𝑃ସ 𝑥  = 𝑥ହ + 14𝑥ସ + 100𝑥ଷ + 340𝑥ଶ+ 499𝑥 +246 
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11 .Numerical analysis and curve fitting
11.9 Evaluation of a Polynomial at Specified Values
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The polyval(p,x) function evaluates a polynomial 𝑃 𝑥 at some specified value of the

independent variable 𝑥 .

Evaluate the polynomial

𝑃ହ 𝑥  =  𝑥 − 3𝑥ହ + 5𝑥ଷ − 4𝑥ଶ+ 3𝑥 +2

at x = -3 .

Solution:

>>p5=[1 −3 0 5 −4 3 2]; % These are the coefficients

Example5:
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11 .Numerical analysis and curve fitting
11.9 Evaluation of a Polynomial at Specified Values
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𝑃ହ 𝑥  =  𝑥 − 3𝑥ହ + 5𝑥ଷ − 4𝑥ଶ+ 3𝑥 +2

at x = -3 .

Solution:

>>p5=[1 −3 0 5 −4 3 2]; % These are the coefficients

>> val_minus3=polyval(p5, −3) % Evaluate p5 at x=−3.

val_minus3 =

1280
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint

Numerical analysis 
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conv(a,b) − multiplies two polynomials a and b

[q,r]=deconv(c,d) − divides polynomial c by polynomial d and displays the quotient q

and remainder r.

polyder(p) − produces the coefficients of the derivative of a polynomial p.

polyint(p) − produces the coefficients of the integral of a polynomial p.
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint

Numerical analysis 
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Example6: Let      𝑃ଵ 𝑥  =  𝑥ହ − 3𝑥ସ + 5𝑥ଶ +7𝑥 + 9

   𝑃ଶ 𝑥  = 2𝑥 − 8𝑥ସ +4𝑥ଶ + 10𝑥 + 12

Compute the product p1.p2 with the conv(a,b) function.

Solution:

>> p1=[1 −3 0 5 7 9];
>> p2=[2 0 −8 0 4 10 12];
>> p1p2=conv(p1,p2)
p1p2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint
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>> p1p2=conv(p1,p2)
p1p2 =

2 -6 -8 34 18 -24 -74 -88 78 166 174 108

Therefore,

𝑃1 . 𝑃2ଵ =  2𝑥ଵଵ − 6𝑥ଵ − 8𝑥ଽ +34𝑥଼ − 18𝑥 − 24𝑥 
− 74𝑥ହ − 88𝑥ସ + 78𝑥ଷ          

+ 166𝑥ଶ + 174𝑥 + 108
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint
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Example7: Let      𝑃ଷ 𝑥  =  𝑥 −  3𝑥ହ + 5𝑥ଷ +7𝑥 + 9

   𝑃ସ 𝑥  = 2𝑥 −  8𝑥ଶ +4𝑥ଶ + 10𝑥 + 12

Compute the quotient p3/p4 using the deconv(p,q) function.

Solution:

>> p3=[1 0 −3 0 5 7 9]; p4 = [2 −8 0 0 4 10 12]; [q,r] = deconv(p3,p4)
q =

0.5
r =

0 4 -3 0 3 2 3
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint
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q =
0.5

r =
0 4 -3 0 3 2 3

Therefore, the quotient q(x) and remainder r(x) are :
q(x)=0.5    𝑟 𝑥  = 4𝑥ହ − 3𝑥ସ +3𝑥ଶ + 2𝑥 + 3 
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint
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Example8: Let      𝑝ହ 
=  2𝑥 −  8𝑥ସ + 4𝑥ଶ +10𝑥 + 12

Compute the derivative 𝑑pହ/dx using the polyder(p) function.

Solution:

>> p5=[2 0 −8 0 4 10 12];
>>der_p5=polyder(p5)
der_p5 =

12    0    -32    0    8    10
Therefore,

      𝑑𝑝ହ/𝑑𝑥 =  12𝑥ହ −  32𝑥ଷ + 8𝑥 +10
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11 .Numerical analysis and curve fitting
11.10 Relations with Polynomials: conv , deconv ,polyder ,polyint
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Example9: Let      𝑝 
= 6𝑥ଶ

Compute the integral ∫𝑝
 

 
dx using the polyint(p) function.

Solution:

>> p6=[6 0 0];
>>der_p6=polyint(p5)
int_p6 =

2    0    0    0   
Therefore,

න 𝑝

 

 

dx = 2𝑥ଷ
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11 .Numerical analysis and curve fitting

11.11 Curve fitting

Matlab also has a convenient tool for curve fitting. If we have two vectors, x
and y, with paired observations, we can approximate the functional relation
between them with a polynomial of some degree.

 If the degree is 1, the relation is linear;

 if it is 2, the relation is quadratic, etc.

 This can be done with the function polyfit().

Numerical analysis 
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11 .Numerical analysis and curve fitting
 The following script estimates the coefficients of polynomials of order 1, 2, 

and 3, for a given set of observations, and plots the results in three graphs.
clc,clear all
x = [1 2 3 4 5 6 7 8 9]; y = [2 3 3 5 7 8 8 9 7];
x_val = linspace(0,10,100);
for degree=1:3
poly = polyfit(x,y,degree);
disp(['Coeff., case ' num2str(degree) ': ' num2str(poly)])
y_val = polyval(poly,x_val);
subplot(3,1,degree)
plot(x,y,'r*'), axis([0 10 0 10])
hold on
plot(x_val,y_val)
ylabel(['Degree: ' num2str(degree)])
end
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11 .Numerical analysis and curve fitting

11.11 Curve fitting:       poly = polyfit(x,y,degree)

Numerical analysis 
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The output is:
Coeff., case 1: 0.85      1.5278
Coeff., case 2: -0.12229      2.0729    -0.71429
Coeff., case 3: -0.053872     0.68579     -1.3318      2.8413

 The first two inputs to polyfit() are the vectors of X- and Y-values, and the third is
the degree of the polynomial (i.e., the highest value of the exponent).

poly = polyfit(x,y,degree);
 The function responds with a matrix that holds one more element than the

degree.
 The elements of the matrix are the coefficients of the estimated polynomial.
 For example, in the third case above

𝑦 = −0.053872𝑥ଷ + 0.68579𝑥ଶ − 1.3318𝑥 + 2.8413
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11 .Numerical analysis and curve fitting

11.11 Curve fitting:       poly = polyfit(x,y,degree)
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 The function polyval() uses a matrix of coefficients, poly above, and returns Y-
values for given X-values.

y_val = polyval(poly,x_val);

 Figure 11-1 shows the resulting three plots. The red markers are the same in all 
three cases, but the curves correspond to the fitted polynomials.
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11 .Numerical analysis and curve fitting

11.11 Curve fitting:       poly = polyfit(x,y,degree)
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Figure 11-1

Examples of  curve 
fitting


