A.2 Homework 2 + Solutions

Homework 2

- Q1 Find the abstract group structure of $U(\mathbb{F}_2D_{12})$. Hints :
 - 1 Note that Maschke's theorem does not apply.
 - $2 D_{12} \cong C_2 \times D_6$.
 - $3 \ \mathcal{U}(\mathbb{F}_2 D_6) \cong D_{12}$
- Q2 Find the size of the group $U(\mathbb{F}_2D_{12})$. Hint : $|U(\mathbb{F}_3D_6)| = 324$.
- Q3 (a) Show that $D_8' \cong C_2$.
- (b) Show that $D_8/D_8' \cong C_2 \times C_2$.
- (c) Conclude that $\mathbb{F}_p D_8 \cong (\bigoplus_{i=1}^4 \mathbb{F}_p) \oplus M_2(\mathbb{F}_p)$. (where $p \neq 2$).
- $\mathbf{Q4}$ (a) Find all the conjugacy classes of D_8 (there are 5).
- (b) What is dim_{Fp}Z(FpD₈).
- (c) Conclude that $\mathbb{F}_p D_8 \cong (\bigoplus_{i=1}^4 \mathbb{F}_p) \oplus M_2(\mathbb{F}_p)$. (where $p \neq 2$).
- Q5 Let R be a commutative ring and let G and H be groups. Prove that

$$R(G \times H) \cong (RG)H$$
.

- Q6 Let $\{R_i\}_{i\in I}$ be a set of rings and let G be a group. Let $R = \bigoplus_{i\in I}$. Show that $RG \cong \bigoplus_{i\in I} R_iG$.
- Q7 The quaternion group of 8 elements has the following presentation:

$$\mathbb{H} = \langle a, b | a^4 = 1, a^2 = b^2, bab^{-1} = a^{-1} \rangle$$

- (a) Show that $\mathbb{H}' = \langle a^2 \rangle$
- (b) Show that ℍ/ℍ['] ≅ C₂ × C₂.