(g) $U(\mathbb{Z}_2S_3)$ contains 12 elements. Find these 12 elements and find the abstract group of order 12 which $U(\mathbb{Z}_2S_3)$ is isomorphic to. (Hint: use $x + \widehat{S}_3 + y + \widehat{S}_3$ where $\widehat{S}_3 = 1 + x + x^2 + y + xy + x^2y$). (ignore the zero-divisors for (g)).

Note: Bonus question (optional).

(h) Find the zero-divisors of Z₂S₃.

Solutions