Theorem 4.44 Let $\{R_i\}_{i\in I}$ be a set of rings and let $R = \bigoplus_{i\in I} R_i$. Let G be a group. Then

$$RG \cong (\bigoplus_{i \in I} R_i)G \cong \bigoplus_{i \in I} (R_iG).$$

Proof. Homework 2.

Example 4.45 \mathbb{F}_5C_6 . $\mathbb{F}_5C_6 \cong \mathbb{F}_5(C_2 \times C_3) \cong (\mathbb{F}_5C_2)C_3 \cong (\mathbb{F}_5 \oplus \mathbb{F}_5)C_3 \cong \mathbb{F}_5C_3 \oplus \mathbb{F}_5C_3$.

Now $\mathbb{F}_5C_3 \cong \mathbb{F}_5 \oplus \mathbb{F}_5 \oplus \mathbb{F}_5$ or $\mathbb{F}_5C_3 \cong \mathbb{F}_5 \oplus \mathbb{F}_{5^2}$. $\mathcal{U}(\mathbb{F}_5C_3) \cong C_4 \times C_4 \times C_4$ or $C_4 \times C_{24}$. But $C_3 < \mathcal{U}(\mathbb{F}_5C_3)$, so by lagrange's theorem , $3 \mid \mathcal{U}(\mathbb{F}_5C_3)$. However $3 \nmid |C_4 \times C_4 \times C_4|$ and $3 \mid |C_4 \times C_{24}|$ so $\mathcal{U}(\mathbb{F}_5C_3) \cong C_4 \times C_{24}$ and $\mathbb{F}_5C_3 \cong \mathbb{F}_5 \oplus \mathbb{F}_{5^2}$.

$$: \mathbb{F}_5C_6 \cong \mathcal{U}(\mathbb{F}_5C_3) \oplus \mathcal{U}(\mathbb{F}_5C_3)$$

 $\cong \mathbb{F}_5 \oplus \mathbb{F}_{5^2} \oplus \mathbb{F}_5 \oplus \mathbb{F}_{5^2}$
 $\cong \mathbb{F}_5 \oplus \mathbb{F}_5 \oplus \mathbb{F}_{5^2} \oplus \mathbb{F}_{5^2}$

Theorem 4.46 (Fundamental Theorem of Finite Abelian Groups) Let A be a finite abelian group. Then

$$A \cong G_1 \times G_2 \times \cdots \times G_n$$

, where G_i is a cyclic group of order p_i^{m_i}, where p_i is some prime.

Example 4.47 Let A be an abelian group of order $30 = 2^1.3^1.5^1$. Then

$$A \cong C_{30}$$

 $\cong C_5 \times C_6$
 $\cong C_5 \times C_3 \times C_2$
 $\cong C_{15} \times C_2$
 $\cong C_{10} \times C_3$

These are all the same because 2,3 and 5 are all relatively prime.

$$A \cong C_2 \times C_3 \times C_5$$
.