Proof. Clearly $RG \cong R(G/G') \oplus \Delta(G,G')$. Now it is also clear that $R(G/G') \cong \oplus$ sum of the commutative summands of RG. It suffices to show that $\Delta(G,G')$ contains no commutative summands.

Assume $\Delta(G,G')\cong A\oplus B$ where A is commutative (and $\neq \{0\}$). Thus $RG\cong R(G/G')\oplus A\oplus B$. Now $RG/B\cong R(G/G')\oplus A$ (check). (In general, $R\cong C\oplus D\Longrightarrow R/C\cong D$). So RG/B is commutative, so by the previous lemma , $\Delta(G,G')\subset B$. Thus $\Delta(G,G')\cong A\oplus B\subset B$ which is a cotradiction.

Definition 4.32 $D_{2n} = \langle x, y | x^n = y^2 = 1, yxy = x^{-1} \rangle$ is called the **dihedral group** of order 2n.

Note : $D_{2,3} = D_6 \cong S_3$.

Example 4.33 \mathbb{F}_3D_{10} . Note that Maschke applies so $\mathbb{F}_3D_{10} \cong \bigoplus_{i=1}^s M_{n_i}(D_i)$ $\cong \bigoplus_{i=1}^s M_{n_i}(K_i)$ (where K_i are finite fields containing \mathbb{F}_3) $\mathbb{F}_3 \oplus \bigoplus_{i=1}^s M_{n_i}(K_i)$

Note: $D_{10} = \langle x, y | x^5 = y^2 = 1, yxy = x^4 \rangle$. $\therefore [x, y] = x^{-1}y^{-1}xy = x^4yxy = x^4.x^4 = x^8 = x^3$. $\therefore D_{10}' > \langle x^3 \rangle so D_{10}' > \langle x \rangle \cong C_5$.

 $: \mathbb{F}_3 D_{10} \cong \mathbb{F}_3(D_{10}/D_{10}') \oplus non\text{-}commutative piece} \cong \mathbb{F}_3 C_2 \oplus non\text{-}commutative piece} \cong \mathbb{F}_3 \oplus \mathbb{F}_3 \oplus non\text{-}commutative piece}.$ By counting dimensions we get either

$$\mathbb{F}_3D_{10} \cong \mathbb{F}_3 \oplus \mathbb{F}_3 \oplus M_2(\mathbb{F}_3) \oplus M_2(\mathbb{F}_3)$$

or

$$\mathbb{F}_3D_{10} \cong \mathbb{F}_3 \oplus \mathbb{F}_3 \oplus M_2(\mathbb{F}_{3^2})$$

Example 4.34 \mathbb{F}_5D_{12} . $5 \nmid 12$ so maschke applies. $\mathbb{F}_5D_{12} \cong \bigoplus_{i=1}^s M_{n_i}(D_i) \cong$