Lemma 4.26 Let H < G and R a ring. Then $ann_r(\Delta(G, H)) \neq 0$ iff H is finite. In this case

$$ann_l(\Delta(G, H)) = \widehat{H}.RG.$$

Furthermore, if $H \triangleleft G$ then \widehat{H} is central in RG and

$$ann_r(\Delta(G, H)) = ann_l(\Delta(G, H)) = \widehat{H}.RG = RG.\widehat{H}$$

Proof. (\Rightarrow). Let's assume that $ann_r(\Delta(G, H)) \neq 0$ and let $0 \neq \alpha = \sum a_g g \in ann_r(\Delta(G, H))$. So if $h \in H$ we get $(h-1)\alpha = 0$ (since $h-1 \in \Delta(G, H)$).

 $\implies h\alpha = \alpha$, so $\sum a_g g = \sum a_g h_g$. Let $g_0 \in \text{supp } \alpha$, so $\alpha_{g_0} \neq 0$. So $hg_0 \in \text{supp } \alpha \ \forall \ h \in H$. But supp α is finite so H is finite.

(⇐). Conversely, let H be finite. \therefore \widehat{H} exists and $\widehat{H} \in ann_r(\Delta(G, H))$. $\therefore ann_r(\Delta(G, H)) \neq 0$.

" In this case . . . " : Assume that $ann_r(\Delta(G, H)) \neq 0$ i.e. H is finite. Let $0 \neq \alpha = \sum a_g g \in ann_r(\Delta(G, H))$. As before $\alpha_{g_0} = \alpha_{hg_0}$.

Now we can partition G into it's cosets (generated by H) to get

$$\alpha = \sum a_g g$$

$$= a_{g_0} \widehat{H} g_0 + a_{g_1} \widehat{H} g_1 + \cdots + a_{g_t} \widehat{H} g_t$$

$$= \widehat{H} \left(\sum_{i=1}^t a_{g_i} g_i \right)$$

$$= \widehat{H} B \exists B \in RG$$

$$\therefore a_{nn_r} (\Delta(G, H)) \subset \widehat{H}.RG.$$

Clearly $\widehat{H}.RG \subset ann_r(\Delta(G, H))$ (since $(h-1)\widehat{H}RG = 0.RG = 0$). "Furthermore . . ." easy.

Proposition 4.27 Let R be a ring and $H \triangleleft G$. If |H| is invertible in R then letting $e_H = \frac{1}{|H|} \cdot \widehat{H}$ we have

$$RG \cong RG.e_H \oplus RG(1 - e_H)$$

where $RG.e_H \cong R(G/H)$ and $RG(1 - e_H) \cong \Delta(G, H)$.