Theorem 4.15 The unit group of any finite field \mathbb{F}_{p^n} (with p a prime) is cyclic of order $p^n - 1$. So $\mathcal{U}(\mathbb{F}_{p^n}) \cong C_{p^n-1}$. So any element of \mathbb{F}_{p^n} has (multiplicative) order dividing $p^n - 1$.

Example 4.16 Consider \mathbb{F}_5 . 1 = 1. $2^2 = 4$, $2^3 = 3$, $2^4 = 1$. $3^2 = 4$, $3^3 = 2$, $3^4 = 1$. $4^2 = 1$. Therefore the elements of $U(\mathbb{F}_5)$ have order 1, 4, 4, 2. These all divide 5 - 1 = 4.

Thus $U(\mathbb{F}_3C_2) \cong U(\mathbb{F}_3) \times U(\mathbb{F}_3) = C_2 \times C_2$ or $U(\mathbb{F}_3C_2) \cong U(\mathbb{F}_{3^2}) = C_{3^2-1} = C_8$. However (by homework 1) $U(\mathbb{F}_3C_2) \cong C_2 \times C_2$. So $\mathbb{F}_3C_2 \ncong \mathbb{F}_{3^2}$ so

$$\mathbb{F}_3C_2 \cong \mathbb{F}_3 \oplus \mathbb{F}_3$$

(Alternatively, note that $U(\mathbb{F}_3C_2)$ and $\mathbb{F}_3 \oplus \mathbb{F}_3$ contain zero divisors but \mathbb{F}_{3^2} does not).

Theorem 4.17 Let G be a finite group and K a field such that char $K \nmid |G|$. Then

$$KG \cong \bigoplus_{i=1}^{s} M_{n_i}(D_i) \cong K \oplus \bigoplus_{i=1}^{s-1} M_{n_i}(D_i)$$

(i.e. the field itself appears at least once as a direct summand in the Wedderburn-Artin decomposition).

Proof. Later

Lemma 4.18 Let K be a finite field. Then if char $K \nmid |G| < \infty$, then

$$KG \cong \bigoplus_{i=1}^{s} M_{n_i}(K_i)$$

where the K_i are fields (i.e. all the division rings appearing are fields).

Proof. Clearly $KG \cong \bigoplus_{i=1}^{s} M_{n_i}(D_i)$ where the D_i are division rings. But D_i is a division ring such that $dim_K D_i < \infty$ (since G is finite). Now Wedderburn's theorem implies that D_i must be a field.

Example 4.19 Consider \mathbb{F}_5S_3 . $\mathbb{F}_5S_3 \cong \bigoplus_{i=1}^s Mn_i(D_i) \cong \mathbb{F}_5 \oplus \bigoplus_{i=1}^{s-1} M_{n_i}(D_i) \cong \mathbb{F}_5 \oplus \bigoplus_{i=1}^{s-1} M_{n_i}(K_i)$.