- (i) R is semisimple
- (ii) G is finite
- (iii) |G| is invertible in R.

Corollary 4.5 Let G be a group and K a field. Then KG is semisimple if and only if G is finite and the characteristic $K \nmid |G|$.

Proof. First note that any field K is semisimple $(K = M_1(K))$ and use a previous lemma).

 (\Leftarrow) Let $|G| < \infty$ and $\operatorname{char} K \nmid |G|$. So $|G| \in K \setminus \{0\}$.

(⇒) |G| is invertible in K. Now apply maschke's theorem \Longrightarrow let KG be semisimple. G is finite by maschke's and also |G| is invertible in K so $|G| \in K \setminus \{0\}$. So |G| is not a multiple of char $K \in K$. ∴ $K \nmid |G|$.

Theorem 4.6 Let G be a finite group and K a finite field such that char $K \nmid |G|$. Then $KG \cong \bigoplus_{i=1}^{s} M_{n_i}(D_i)$ where D_i is a division ring containing K in it's center and

$$|G| = \sum_{i=1}^{s} (n_i^2.dim_K(D_i))$$

Definition 4.7 A field K is algebraically closed if it contains all of the roots of the polynomials in K[x].

Example 4.8 C is algebraically closed, while H is not.

Corollary 4.9 Let G be a finite group and K an algebraically closed field, where char $K \nmid |G|$. Then

$$KG \cong \bigoplus_{i=1}^{s} M_{n_i}(K)$$
 and $|G| = \sum_{i=1}^{s} n_i^2$

Example 4.10 $\mathbb{C}C_3$. Note that C_3 is finite and char $\mathbb{C} = 0 \nmid 3$ so maschke's theorem does apply and

$$\mathbb{C}C_3 \cong \bigoplus_{i=1}^s M_{n_i}(D_i) = \bigoplus_{i=1}^s M_{n_i}(\mathbb{C})$$
 by the corollary above