(ii)
$$e_i = (0, ..., 0, 1.e_i, 0, ..., 0) \in L_1 \oplus ... \oplus L_t$$
. $\therefore e_i e_j = (0, ..., 0, 1.e_i, 0, ..., 0)(0, ..., 0, 1.e_j, 0, ..., 0) = (0, ..., 0) = 0$.

(iv) Assume that (iv) does not hold, so $e_i = e'_i + e''_i$, (where e'_i and e''_i are idempotents such that $e'_ie''_i = 0 = e''_ie'_i$). Note that $R = \bigoplus_{i=1}^t L_i = \bigoplus_{i=1}^t Re_i$. $Re_i \subset L_i$ since $e_i \in L_i$ and L_i is a left ideal. Show $L_i \subset Re_i$. Let $a \in L_i$. Then $a = a.1 = a(e_1 + e_2 + \cdots + e_t) = ae_1 + ae_2 + \cdots + ae_t$.

$$\Longrightarrow \underbrace{a - ae_i}_{\in L_i} = \underbrace{ae_1 + ae_2 + \dots + ae_{i-1} + ae_{i+1} + \dots + ae_t}_{L_1 \oplus L_2 \oplus \dots \oplus L_{i-1} \oplus L_{i+1} \oplus \dots \oplus L_t}.$$

 $\therefore a - ae_i = 0 \Longrightarrow a = ae_i \in Re_i \text{ and so } Re_i = l_i.$

 $L_i = Re_i = R(e'_i + e''_i) = Re'_i \oplus Re''_i$. Now Re'_i and Re''_i are left ideal so L_i is not minimal. This is a contradiction.

Note: A set of idempotents $\{e_1, e_2, ..., e_t\}$ with properties (i),(ii) and (iii) above are called **complete family of orthogonal idempotents**. If $\{e_1, e_2, ..., e_t\}$ has the property of (i)-(iv), then it is called a set of **primitive idempotents**.

Theorem 4.2 (Wedderburn-Artin Theorem) R is a semisimple ring if and only if R can be decomposed as a direct sum of finitely many matrix rings over division rings.

i.e.
$$R \cong M_{n_1}(D_1) \oplus M_{n_2}(D_2) \oplus \cdots \oplus M_{n_s}(D_s)$$

where D_i is a division ring and $M_{n_i}(D_i)$ is the ring of $n_i \times n_i$ matrices over D_i .

Theorem 4.3 Let R be a semisimple ring. Then the wedderburn-artin decomposition above is unique.

i.e.
$$R \cong \bigoplus_{i=1}^{s} M_{n_i}(D_i) \cong \bigoplus_{i=1}^{t} M_{m_i}(D_{i'}) \Longrightarrow s = t$$

and after permuting indices $n_i = m_i$ and $D_i = D_{i'} \forall i \in 1, ..., s$.

Theorem 4.4 (Maschke's Theorem) Let G be a group and R a ring. Then RG is semisimple if the following conditions hold: