So the matrix of T(g) has all zero's in it's main diagonal. Hence the $tr(T(g)) = 0 \forall g \in G$ except for g = 1.

$$\therefore \operatorname{tr}(T(\gamma)) = \operatorname{tr}\left(\sum_{i=1}^{n} c_{g_{i}}g_{i}\right)$$

$$= \sum_{i=1}^{n} c_{g_{i}}\operatorname{tr}(T(g_{i}))$$

$$= c_{g_{1}}\operatorname{tr}(T(g_{1})) + c_{g_{2}}\operatorname{tr}(T(g_{2})) + \cdots + c_{g_{n}}\operatorname{tr}(T(g_{n}))$$

$$= c_{g_{1}}\operatorname{tr}\left(\begin{array}{ccc} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{array}\right) + 0 + \cdots + 0$$

$$= c_{g_{1}}\cdot|G|$$

$$= c_{g_{1}}\cdot|G|$$

$$= c_{1}\cdot|G|$$

Theorem 3.10 (Berman-Higman) Let $\gamma = \sum_{g \in G} c_g g$ be a unit of finite order in $\mathbb{Z}G$, where G is a finite group and $c_1 \neq 0$. Then $\gamma = \pm 1 = c_1$.

Proof. Let |G| = n and let $\gamma^m = 1$. Considering $\mathbb{Z}G$ as a subring of $\mathbb{C}G$, we will consider it's left regular representation and apply the previous lemma. Then $\operatorname{tr}(\mathcal{T}(\gamma)) = n.c_1$. Now $\gamma^m = 1$ therefore all the eigenvalues of $\mathcal{T}(\gamma)$ are the nth roots of unity.

$$\therefore \operatorname{tr} \left(\left. \mathcal{T} (\gamma) \right. \right) = \operatorname{tr} \left(\mathcal{T} \left(\sum_{i=1}^n c_{g_i} g_i \right) \right) = \sum c_g \operatorname{tr} \left(\left. \mathcal{T} (g) \right. \right) = \sum (\operatorname{eigenvalue of tr} \left(\left. \mathcal{T} (\gamma) \right) \right)$$

Now $T(\gamma)$ is similar to a diagonal matrix $D\left(T(\gamma) \backsim D\right)$. So tr $\left(T(\gamma)\right) = \text{tr } D$ = \sum diagonal elements of $D = \sum$ eigenvalues of $D = \sum$ eigenvalue of $T(\gamma)$