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Theorem 3.10 { Berman-Higman) Let 4 = Ef'“g be a unit of finite or.
TS
der in 24, where O 15 a finile group ond o # 0, Then v = £1 = ¢.

Proof. Lot |G = n and let 4™ = 1. Considering Z67 ns a subring of C6, we
will consicder it's left regular representation and apply the previous lemma,
Then tr { T(¥)) = nep. Now 4™ = 1 therefore all the eigenvalues of T(v)

are the n'? roots of unity,
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S (T{y)) =t (T (z -r'mlr;,)] = Erul.r{ Tlg)) = Z{l'lm'lwnlm' of tr ( T(4)1)

Now T(%] s similor to a diagonal matrix D (T(5) = D). Sotr( T(y) ] =tz [
=3 dingonal elements of D = Y elgenvalues of D = % elgenvalue of T(+y)



