Lemma 3.5 Let K be a field and G a finite group.

- If α ∈ KG is nilpotent (i.e. ∃m ∈ N such that α^m = 0), then the eigenvalues of (T(α)) are all zero.
- (ii) If β ∈ KG is a unit of finite order (i.e. ∃n ∈ N such that βⁿ = 1), then the eigenvalues of (T(α)) are all nth roots of unity.
- (iii) If f(γ) = 0, ∃γ ∈ KG and ∃f ∈ K[x] (the set of all polynomials over K) then f(λ_i) = 0 ∀ eigenvalues λ_i of (T(γ))

Proof. Note that $(iii) \Longrightarrow (i)$ and (ii). (i) Let $\alpha \in KG$ with $\alpha^m = 0$. Let λ be an eigenvalue of $(\mathcal{T}(\alpha))$ i.e. $(\mathcal{T}(\alpha))X = \lambda X$ where X is a $n \times 1$ column vector with entries in K. Now $(\mathcal{T}(\alpha))^m.X = \lambda^m.X$. $(\mathcal{T}(\alpha))^m.X = \mathcal{T}(\alpha)^m.X = \mathcal{T}(0).X = 0_{n \times n}X = 0_{n \times 1}$ since \mathcal{T} is a ring homomorphism. $\therefore \lambda^m.X = 0_{n \times 1} \Longrightarrow \lambda^m = 0_{n \times 1}$ (since K has no zero divisors) $\Longrightarrow \lambda = 0$.

- (ii) Let $\beta \in KG$ with $\beta^n = 1$. Let λ be an eigenvalue of $(\mathcal{T}(\beta))$ i.e. $(\mathcal{T}(\beta))X = \lambda X$. Now $(\mathcal{T}(\beta))^n.X = \lambda^n.X$. $(\mathcal{T}(\beta))^n.X = \mathcal{T}(\beta^n).X = \mathcal{T}(1).X = I_{n \times n}.X = X$. $\therefore \lambda^n.X = X \Longrightarrow \lambda^n = 1$ (since K is a field) $\Longrightarrow \lambda$ is an n^{th} root of unity.
- (iii) Let $f(\gamma) = 0 \ \forall \ \gamma \in KG$ and $\exists f \in K[x]$. Let λ be an eigenvalue of $(T(\gamma)) : (T(\gamma))X = \lambda X$. $\Longrightarrow f(T(\gamma)).X = f(\lambda).X$ since T is a K linear ring homomorphism on RG. $f(T(\gamma)).X = T(f(\gamma)).X = T(0).X = 0.X = 0$. $\therefore f(\lambda).X = 0 \Longrightarrow f(\lambda) = 0$.

Example 3.6 Let R be a ring and let G be a finite group. We define the trivial group representation of G as:

$$T: G \longrightarrow GL_n(R)$$
 $g \mapsto I_{n \times n} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \end{pmatrix}$

 $T(gh) = I_{n \times n}$. $T(g)T(h) = I_{n \times n}$. $I_{n \times n} = I_{n \times n}$. So $T : G \longrightarrow \{I_{n \times n}\} \cong C_1$ is a group epimorphism.