Chapter 3

Group Ring Representations

Definition 3.1 Let G be a finite group and R a ring. The R-module RG (the group ring RG) with the natural multiplication $g\alpha$ ($g \in G$, $\alpha \in RG$). Now given $g \in G$, g acts on the basis of RG by left multiplication and permutes the basis elements. Define $T:G \longrightarrow GL_n(R)$ where $g \mapsto T_g$ and T_g acts on the basis elements by left multiplication. So if $G = \{g_1 = 1, g_2, \ldots, g_n\}$ and T_g $g_i = gg_i \in G$. The function T from G to $GL_n(R)$ is called the (left-regular) group representation of the finite group G over the ring R.

Think of T_g as left multiplication by a group element or left multiplication of a column vector by a $n \times n$ matrix.

Lemma 3.2 Let G be a finite group of order n. Let R be a ring. Then the group representation T is an injective homomorphism (monomorphism) from G to $GL_n(R)$.

Proof. Let $g, h \in G$ and $g_i \in G$ where g_i are the basis elements. We want to show T(gh) = T(g)T(h). Now $T(gh).(g_i) = (gh).g_i = g(hg_i) = T_g(T_h(g_i)) \forall g_i \in G = T(g)T(h)(g_i)$. $\therefore T(gh) = T(g)T(h)$.

1-1 : We must show that if T(g) = I_n ∈ GL_n(R) ⇒ g = 1_G. Let g ∈ G with T(g) = I_n. Then T(g)(g_i) = g_i ∀g_i ∈ G. In particular (with g_i = g₁ = 1_G), T(g)(1) = I_n ⇒ g.1 = 1 ⇒ g = 1.

Example 3.3 Let $G = C_3 = \langle a | a^3 = 1 \rangle$.