Proposition 2.22 The set $\{g-1 \mid g \in G, g \neq 1\}$ is a basis for $\Delta(G)$ over

i.e. $\Delta(G) = \{ \sum_{g \in G} a_g(g-1) \, | \, g \in G, \, g \neq 1 \}$ and the g-1 are linearly inde-

pendant over
$$R$$
.
Proof. Let $\alpha = \sum_{g \in G} a_g g \in \Delta(G)$. So $\sum_{g \in G} a_g = 0$. Thus $\alpha = \sum_{g \in G} a_g g - 0 = \sum_{g \in G} a_g g - 1$ so this is a spanning set for $\Delta(G)$. We will

 $\sum_{g \in G} a_g g - \sum_{g \in G} a_g = \sum_{g \in G} a_g (g-1) \text{ so this is a spanning set for } \Delta(G). \text{ We will}$

show linear independance : Let
$$\sum_{g \in G} a_g(g-1) = 0$$
. Then $0 = \sum_{g \in G} a_g g - \sum_{g \in G} a_g g = \sum_{g \in G} a_g g = 0 \iff a_g = 0 \ \forall \ g \in G$. Since G is linear independant over R , by the definition of the

group ring RG.

Note: RG has dimension |G| over R. $\Delta(G)$ has dimension |G| - 1 over R. If R is a field then these are vector spaces. Otherwise they are R-modules.

Proposition 2.23 Let R be a commutative ring. The map

$$*: RG \longrightarrow RG \quad where \sum_{g \in G} a_g g \mapsto \sum_{g \in G} a_g g^{-1}$$

is an involution. Then * has the following properties :

(i)
$$(\alpha + \beta)^* = \alpha^* + \beta^*$$

(ii)
$$(\alpha \beta)^* = \alpha^* \beta^*$$

(iii)
$$(\alpha^*)^* = \alpha$$

Proof. Homework 2.

Proposition 2.24 Let $I \triangleleft R$ and let G be a group. Then

$$IG = \{ \sum_{g \in G} a_g g \, | \, a_g \in I \} \lhd RG$$