Lemma 2.19 Let R be s ring. R is semisimple iff every left ideal of R is a direct summand of R.

Example 2.20 In the above example $L_1 \oplus L_2$ is a left ideal of R and $(L_1 \oplus L_2) \oplus (L_3 \cdots \oplus L_n) = R$.

Theorem 2.21 Let R be a ring. R is semisimple iff every left ideal of R is of the form L = Re, where $e \in R$ is an idempotent.

Proof. (\Rightarrow) Assume that R is semisimple. Let $L \stackrel{!}{\lhd} R$. By the previous lemma, L is a direct summand of R. So there exists a left ideal $L' \stackrel{!}{\lhd} R$ such that $L \oplus L' = R$. So 1 = x + y for some $x \in L$ and $y \in L'$. (**Question**: Is this decomposition unique?).

Then $x = x.1 = x(x+y) = x^2 + xy$ So $\underbrace{xy}_{\in L'} = \underbrace{x - x^2}_{\in L}$. Thus $xy \in L \cap L' = \{0\}$.

Thus $xy=0=x-x^2$, so $x=x^2$. Hence, x is an idempotent. We have shown L=Rx where $x\in L$ so $Rx\subset L$. We must show $L\subset Rx$. Let $a\in L$. Then a=a.1=a(x+y)=ax+ay=a. $\therefore \underbrace{a-ax}_{L}=\underbrace{ay}_{L'}\in L\cap L'=\{0\}$. So

a - ax = 0 so $a = ax \in Rx$. Thus $L \subset Rx$. So L = Rx.

(\Leftarrow) assume that every left ideal of R is of the form L=Re for some idempotent $e \in R$. We will show that every left ideal is a direct summand of R. Let $L \stackrel{!}{\lhd} R$. Then L=Re. Let L'=R(1-e). Then L' is a left ideal of R. (Note $(1-e)^2=1-e-e+e^2=1-2e+e=1-e$). We must show that $L \oplus L$; = R (i.e. L+L'=R and $L \cap L'=\{0\}$).

Let $x \in R$ Then $x = x.1 = x(e + (1 - e)) = xe + x(1 - e) \in L + L'$. $\therefore R = L \oplus L'$. Let $x \in L \cap L' = Re \cap R(1 - e)$. Then x = r.e = s(1 - e), $r, s \in R$. Thus $x.e = (r.e).e = r.e^2 = r.e = x$. Also $x.e = (s(1 - e))e = s(e - e^2) = s(0) = 0$. Thus x = 0 so $L \cap L' = \{0\}$ and so $R = L \oplus L'$.

Let $\alpha = \sum_{g \in G} a_g g \in RG$. Now all but finitely many of the a_g 's are non-zero.

We define the support of α as

$$\operatorname{supp} \alpha = \{g \in G \mid a_g \neq 0\}$$

The group < supp $\alpha >$ (generated by the support of α) is a finitely generated group. So R < supp $\alpha > \subset RG$.