Example 2.13 In \mathbb{Z}_6 , 3 is an idempotent since $3^2 = 9 = 3$.

Example 2.14 In $M_2(\mathbb{F}_2)$, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ are idempotents since

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$
$$\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

Definition 2.15 The center of R is

$$Z(R) = \{z \in R \,|\, zr = rz \;\forall\; r \in R\}$$

Question: Is Z(R) a ring? Question: Is Z(R) an ideal?

Definition 2.16 e is called a central idempotent if $e^2 = e$ and $e \in Z(R)$.

Definition 2.17 A ring R is **semisimple** if it can be decomposed as a direct sum of finitely many minimal left ideals. i.e. $R = L_1 \oplus \cdots \oplus L_t$, where L_i is a minimal left ideal.

Note: L is a minimal left ideal of R if L is a left ideal of R ($L \triangleleft R$) and if J is any other left ideal of R contained in L, then either $J = \{0\}$ or J = L.

Example 2.18 $M_n(D)$ is a semisimple ring. Let $L_1 = \begin{pmatrix} D & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$

and let
$$L_2 = \begin{pmatrix} 0 & D & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$
 and \dots let $L_n = \begin{pmatrix} 0 & 0 & 0 & \dots & D \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$.

For each i, L_i is a minimal left ideal of R (check!). Also $M_n(D) = L_1 \oplus \cdots \oplus L_n$ so $M_n(D)$ is semisimple (check!).