Proof. Suppose $u \in I$, with u invertible (say u.v = v.u = 1). Now since I is an ideal, we have $v.i \in I \, \forall \, i \in I$. In particular, $v.u = 1 \in I$. If r is any element of R, then $r.1 \in I$. So $R \subset I$. So R = I contradiction.

Lemma 2.6 Let D be a division ring. Then

- D has no ideals (apart from {0} and itself).
- (ii) D has no zero divisors (done before !).

Proof. (i) Let $I \triangleleft D$, with $I \neq \{0\}$. Let $x \neq 0$ and $x \in I$. So $0 \neq x \in D$, so x is invertible, by the previous lemma I = D.

(ii) Let u.v = 0 with $u \neq 0$ and $v \neq 0$ (and $u, v \in D$). Now u^{-1} and v^{-1} exists so $u^{-1}(uv) = u^{-1}.0 \Longrightarrow v = 0$, which is a contradiction.

Definition 2.7 An elementary matrix $E_{i,j}$ is the matrix of all whose entries are) except for the (i, j)th entry which is 1.

Example 2.8

$$E_{1,2} = \begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 \end{pmatrix}$$

Lemma 2.9 Let D be a division ring and $R = M_n(D)$ $(n \times n \text{ matrices over division ring } D)$. Then $M_n(D)$ has no ideals (apart from $\{0\}$ and $M_n(D)$).

Proof. If n=1, then this just part (i) of the above lemma. Let $B_i=E_{i,h}AE_{k,i}$. Now all entries of B_i equal) except for the $(i,i)^{\text{th}}$, which is $a_{h,k}$. Thus $B_i=a_{h,k}E_{i,i} \ \forall \ i\in\{1,2,\ldots,n\}$. Now I was a (two sided) ideal, $A\in I$