Definition 1.23 $(\mathbb{Z}_n, +, \cdot)$ is the ring of integers modulo n (where $n \in \mathbb{Z}$, n > 0). In fact this is a commutative ring.

Example 1.24 Consider $(\mathbb{Z}_5, +, \cdot)$: $1^{-1} = 1$, $2^{-1} = 3$, $3^{-1} = 2$ and $4^{-1} = 4$. So \mathbb{Z}_5 is a division ring, so it is a field.

Example 1.25 Consider $(\mathbb{Z}_6,+,\cdot):1^{-1}=1,\,2^{-1}$ doesn't exist, 3^{-1} doesn't exist, 4^{-1} doesn't exist and $5^{-1}=5$. So $\mathcal{U}(\mathbb{Z}_6)=\{1,5\}=<5>\cong C_2$. So \mathbb{Z}_6 is not a division ring and hence it is not a field.

Definition 1.26 In a ring R, if a.b = 0 but $a \neq 0$ and $b \neq 0$ then a and b are called **zero divisors**.

Definition 1.27 If a ring R has no zero-divisors, then R is called an integral domain (or just a domain).

Example 1.28 $(\mathbb{Z}, +, \cdot)$ is an integral domain since $a.b = 0 \Longrightarrow a = 0$ or b = 0.

Example 1.29 In \mathbb{Z}_6 , 2.3=0. So 2 and 3 are zero divisors. Therefore \mathbb{Z}_6 is not an integral domain.

Example 1.30 $(\mathbb{Z}_5, +, \cdot)$ is an integral domain.

Lemma 1.31 Every division ring is an integral domain.

Proof. We assume that R is a division ring. We want to show that R has no zero divisors. Proceed by contradiction: Assume a.b = 0, where $a \neq 0$ and $b \neq 0$. Since $0 \neq a \in R$ then we have $a^{-1} \in R$. $\therefore a^{-1}(ab) = a^{-1}(0) = 0 = (a^{-1}a)b = 1.b = b = 0$. This is a contradiction.

Notes:

- (1) The converse is not true. i.e. there are integral domains which are not division rings. e.g. (Z, +, ·) is not an integral domain but not a division ring.
- (2) Zero-divisors are never invertible.

Example 1.32 Let $R = \mathbb{F}_2 = \mathbb{Z}_2$ and $G = C_2$ (\mathbb{Z}_2 is the ring of order 2, which is a field). Writing down the elements : $\mathbb{F}_2 = \{0,1\}$ and $C_2 = \{1,x\} = \langle x \rangle = \langle x | x^2 = 1 \rangle$.