6

If M is a left R-module and a right R-module, then we call M a (two-sided) R-module.

Definition 1.13 Let R be a ring. An element $a \in R$ is **invertible** in R if $\exists b \in R$ such that a.b = b.a = 1.

We write $b = a^{-1}$ (the inverse of a) and say that a is a unit of R.

Definition 1.14

$$U(R) = \{a \in R \mid \text{if a is a unit of } R \}$$

Note that U(R) is a group (with multiplication) called the **group of units** of R.

Example 1.15 $U(\mathbb{Z}) = \{+1, -1\}$, the cyclic group of order 2 (written C_2).

Example 1.16 $U(\mathbb{Q}) = \mathbb{Q} \setminus \{0\}.$

$$\left(\frac{a}{b}\right)^{-1} = \frac{b}{a} \text{ where } a \neq 0, b \neq 0$$

Example 1.17 $U(\mathbb{R}) = \mathbb{R} \setminus \{0\}$.

Example 1.18 $U(\mathbb{C}) = \mathbb{C} \setminus \{0\}.$

Example 1.19 $U(\mathbb{H}) = \mathbb{H} \setminus \{0\}.$

Example 1.20 $U(M_n(\mathbb{R})) = \{A \in M_n(\mathbb{R}) \mid det A \neq 0\} = GL_n(\mathbb{R}).$

Definition 1.21 A ring R is called a **division ring** if every non-zero element of R is a unit. i.e. $U(R) = R \setminus \{0\}$.

Note : \mathbb{Q} , \mathbb{R} , \mathbb{C} and \mathbb{H} are division rings. \mathbb{Z} and $M_n(\mathbb{R})$ are not division rings.

Definition 1.22 A division ring R is called a (commutative) field if R is a commutative ring.

Note: \mathbb{Q} , \mathbb{R} and \mathbb{C} are fields. \mathbb{H} is not a field (non-commutative). \mathbb{Z} is not a field (not a division ring).