$$i^2 = j^2 = k^2 = -1 = ijk$$

 $ij = k$ $ji = -k$
 $jk = i$ $kj = -i$
 $ki = j$ $ik = -j$ Clockwise

$$1.i = i.1 = i, 1.j = j.1 = j, 1.k = k.1 = k$$
 and $1.1 = 1$

Now define:

$$(a + bi + cj + dk)(e + fi + gj + hk) = (ae - bf - cg - dh) + (af + be + ch - dg)i$$

 $(ag + ce - bh + df)j + (ah + de + bg - cf)k$

This multiplication gives us a non-commutative ring $(ij \neq ji)$, called the Quaternions (\mathbb{H}).

Example 1.9 (1840's Hamilton) Consider an n-dimensional vector space (over \mathbb{R} say) with basis $\{e_1, e_2, \ldots, e_n\}$ (the basic units). Define the product $e_i.e_j \ \forall \ i,j=1\ldots n$. Then (as in the previous example) insist on the distributive laws and we see that this new object is a ring, called the set of Hypercomplex Numbers (M).

Example 1.10 If $\{e_1, e_2, ..., e_n\}$ forms a group (under multiplication) G, then the hypercomplex numbers generated by G is called the **Group Ring** ($\mathbb{R}G$). Arthur Cayley 1854.

Definition 1.11 Given a group G and a ring R, define the **Group Ring** RG to be the set of all linear combinations

$$\alpha = \sum_{g \in G} a_g g$$

where $a_g \in R$ and where only finitely many of the a_g ^s are non-zero. Define the sum

$$\alpha + \beta = \left(\sum_{g \in G} a_g g\right) + \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} (a_g + b_g)g.$$