Definition 1.5 If $\exists 1 \in R$ such that $1.a = a.1 \forall a \in R$, then R is a **ring** with identity. Otherwise R is a ring without identity.

For us, R (usually) is a ring with identity.

Example 1.6 The set $M_n(\mathbb{R})$ of all $n \times n$ matrices with real coefficients is a ring (with matrix addition and matrix multiplication).

(i)
$$A + (B + C) = (A + B) + C$$

(ii) Let
$$0 = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$
, then $0 + A = A + 0 = A$

(iv)
$$A + B = B + A$$
 \checkmark

(vi)
$$A.(B+C) = A.B+B.C$$
 \checkmark

(vii)
$$(A + B).C = A.C + B.C \quad \forall A, B, C \in M_n(\mathbb{R}) \checkmark$$

Note: $M_n(\mathbb{R})$ is a non-commutative ring (since $AB \neq BA \forall A, B \in M_n(\mathbb{R})$).

Example 1.7 $\mathbb{C} = \{a + ib \mid a, b \in \mathbb{R}\}\$ is a ring (the complex numbers). It is also a 2-dimensional vector space over \mathbb{R} with basis $\{1, i\}$.

Example 1.8 Consider a 4-dimensional vector space over \mathbb{R} with basis $\{1, i, j, k\}$. We define multiplication as follows