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Chapter 1

Introduction

1.1 Definitions and examples of Rings and

Group Rings

Definition 1.1 A ring is a set R with two binary operations + and · such
that

(i) a + ( b + c ) = ( a + b ) + c

(ii) ∃ 0 ∈ R s.t. a + 0 = a = 0 + a

(iii) ∃ − a ∈ R s.t. a + (−a ) = 0 = (−a ) + a

(iv) a + b = b + a

(v) a.( b.c ) = ( a.b ).c

(vi) a.( b + c ) = a.b + b.c

(vii) ( a + b ).c = a.c + b.c ∀ a, b, c ∈ R

Definition 1.2 If a.b = b.a ∀ a, b ∈ R, then R is a commutative ring.

Example 1.3 ( Z, +, · ) is a commutative ring.

Example 1.4 The set P of polynomials of any degree over R is a ring (
with the obvious multiplication and addition). This is also a commutative
ring e.g. (2x2 + 1)(3x + 2) = (3x + 2)(2x2 + 1) ∈ P .

2
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Definition 1.5 If ∃1 ∈ R such that 1.a = a.1 ∀ a ∈ R, then R is a ring
with identity. Otherwise R is a ring without identity.

For us, R (usually) is a ring with identity.

Example 1.6 The set Mn(R) of all n× n matrices with real coefficients is
a ring (with matrix addition and matrix multiplication).

(i) A + (B + C) = (A + B) + C X

(ii) Let 0 =

(
0 0
0 0

)
, then 0 + A = A + 0 = A X

(iii) If A =

(
a b
c d

)
,then −A =

(
−a −b
−c −d

)
and −A + A = A + −A =

0 X

(iv) A + B = B + A X

(v) A.( B.C ) = ( A.B ).C X

(vi) A.( B + C ) = A.B + B.C X

(vii) ( A + B ).C = A.C + B.C ∀ A,B,C ∈Mn(R) X

Note : Mn(R) is a non-commutative ring ( since AB 6= BA ∀ A,B ∈
Mn(R)).

Example 1.7 C = {a + ib | a, b ∈ R} is a ring (the complex numbers). It
is also a 2-dimensional vector space over R with basis {1, i}.

Example 1.8 Consider a 4-dimensional vector space over R with basis {1, i, j, k}.
We define multiplication as follows
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i2 = j2 = k2 = −1 = ijk

ij = k ji = −k

jk = i kj = −i

ki = j ik = −jki = j

1.i = i.1 = i, 1.j = j.1 = j, 1.k = k.1 = k and 1.1 = 1

Clockwise

•
k

•
j

•
i

Now define:

(a + bi + cj + dk)(e + fi + gj + hk) = (ae− bf − cg − dh) + (af + be + ch− dg)i

(ag + ce− bh + df)j + (ah + de + bg − cf)k

This multiplication gives us a non-commutative ring (ij 6= ji), called the
Quaternions ( H ).

Example 1.9 (1840’s Hamilton) Consider an n-dimensional vector space
(over R say) with basis {e1, e2, . . . , en} (the basic units). Define the product
ei.ej ∀ i, j = 1 . . . n. Then (as in the previous example) insist on the dis-
tributive laws and we see that this new object is a ring, called the set of
Hypercomplex Numbers (M).

Example 1.10 If {e1, e2, . . . , en} forms a group (under multiplication) G,
then the hypercomplex numbers generated by G is called the Group Ring
(RG). Arthur Cayley 1854.

Definition 1.11 Given a group G and a ring R, define the Group Ring
RG to be the set of all linear combinations

α =
∑

g∈G

agg

where ag ∈ R and where only finitely many of the ag
s are non-zero.

Define the sum

α + β =

(
∑

g∈G

agg

)
+

(
∑

g∈G

bgg

)
=
∑

g∈G

(ag + bg)g.
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Define the product

αβ =

(
∑

g∈G

agg

)(
∑

h∈G

bhh

)
=
∑

g,h∈G

agbhgh

Notes :

(1) We can also write the product αβ as
∑

u∈G

Cuu, where Cu =
∑

gh=u

agbh

(2) RG is a ring (with addition and multiplication defined as above).

(3) Given α ∈ RG and λ ∈ R, we can define a multiplication

λ.α = λ
∑

g∈G

agg =
∑

g∈G

(λag)g.

(4) RG is an example of a hypercomplex number system ( if R = R).

Definition 1.12 Let R be a ring. An abelian group (M, +) is called a
(left) R-module if for each a, b ∈ R and m ∈ M , we have a product
am ∈M such that

(i) (a + b)m = am + bm

(ii) a(m1 + m2) = am1 + am2

(iii) a(bm) = (ab)m

(iv) 1.m = m ∀ a, b ∈ R and ∀ m,m1,m2 ∈M .

Similarly we could define a (right) R-module

(i) m(a + b) = ma + mb

(ii) (m1 + m2)a = m1a + am2a

(iii) m(ab) = (ma)b

(iv) m.1 = m ∀ a, b ∈ R and ∀ m,m1,m2 ∈M .
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If M is a left R-module and a right R-module, then we call M a (two-sided)
R-module.

Definition 1.13 Let R be a ring. An element a ∈ R is invertible in R if
∃ b ∈ R such that a.b = b.a = 1.

We write b = a−1 (the inverse of a) and say that a is a unit of R.

Definition 1.14

U(R) = {a ∈ R | if a is a unit of R }

Note that U(R) is a group (with multiplication) called the group of units
of R.

Example 1.15 U(Z) = {+1,−1}, the cyclic group of order 2 (written C2).

Example 1.16 U(Q) = Q \ {0}.

(a

b

)−1

=
b

a
where a 6= 0, b 6= 0

Example 1.17 U(R) = R \ {0}.

Example 1.18 U(C) = C \ {0}.

Example 1.19 U(H) = H \ {0}.

Example 1.20 U(Mn(R)) = {A ∈Mn(R) | detA 6= 0} = GLn(R).

Definition 1.21 A ring R is called a division ring if every non-zero ele-
ment of R is a unit. i.e. U(R) = R \ {0}.

Note : Q, R, C and H are division rings. Z and Mn(R) are not division
rings.

Definition 1.22 A division ring R is called a (commutative) field if R
is a commutative ring.

Note : Q, R and C are fields. H is not a field (non-commutative). Z is not
a field (not a division ring).



CHAPTER 1. INTRODUCTION 7

Definition 1.23 (Zn, +, ·) is the ring of integers modulo n (where n ∈ Z,
n > 0 ). In fact this is a commutative ring.

Example 1.24 Consider (Z5, +, ·) : 1−1 = 1, 2−1 = 3, 3−1 = 2 and 4−1 =
4. So Z5 is a division ring, so it is a field.

Example 1.25 Consider (Z6, +, ·) : 1−1 = 1, 2−1 doesn’t exist, 3−1 doesn’t
exist, 4−1 doesn’t exist and 5−1 = 5. So U(Z6) = {1, 5} =< 5 >∼= C2 . So
Z6 is not a division ring and hence it is not a field.

Definition 1.26 In a ring R, if a.b = 0 but a 6= 0 and b 6= 0 then a and b
are called zero divisors.

Definition 1.27 If a ring R has no zero-divisors, then R is called an in-
tegral domain (or just a domain).

Example 1.28 (Z, +, ·) is an integral domain since a.b = 0 =⇒ a = 0 or
b = 0.

Example 1.29 In Z6, 2.3=0. So 2 and 3 are zero divisors. Therefore Z6

is not an integral domain.

Example 1.30 (Z5, +, ·) is an integral domain.

Lemma 1.31 Every division ring is an integral domain.

Proof. We assume that R is a division ring. We want to show that R has
no zero divisors. Proceed by contradiction : Assume a.b = 0, where a 6= 0
and b 6= 0. Since 0 6= a ∈ R then we have a−1 ∈ R. ∴ a−1(ab) = a−1(0) =
0 = (a−1a)b = 1.b = b = 0. This is a contradiction. �

Notes :

(1) The converse is not true. i.e. there are integral domains which are not
division rings. e.g. (Z, +, ·) is not an integral domain but not a division
ring.

(2) Zero-divisors are never invertible.

Example 1.32 Let R = F2 = Z2 and G = C2 (Z2 is the ring of order
2, which is a field). Writing down the elements : F2 = {0, 1} and C2 =
{1, x} =< x >=< x |x2 = 1 >.
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F2C2 = {
∑

g∈C2

agg | ag ∈ F2}

= {0F2
.1C2

+ 0F2
.x, 1F2

.1C2
+ 0F2

.x, 0F2
.1C2

+ 1F2
.x, 1F2

.1C2
+ 1F2

.x}

= {0F2C2
, 1F2C2

, 1F2
.x, 1F2

.1C2
+ 1F2

.x}

= {0, 1, x, 1 + x}

Note that . is F2 module multiplication. Now let’s construct the cayley tables
for F2C2.

(•) 1 + 1 = 1F2
.1C2

+ 1F2
.1C2

= (1F2
+ 1F2

)1C2

= (0F2
)1C2

= 0

(⋆) x + x = 1F2
.x + 1F2

.x

= (1F2
+ 1F2

)x

= (0F2
)x = 0

+

0

1

x

1 + x

0 1 x 1 + x

0 1 x 1 + x

1

x

1 + x

0

1 + x

x

1 + x

0

1

x

1

0

(•)

(⋆)

F2C2

(F2C2, +) is a group.

(•) (1 + x)(1 + x) = 1(1 + x) + x(1 + x)

= 1 + x + x + 1

= 2 + 2x = 0

·

0

1

x

1 + x

0 1 x 1 + x

0 0 0 0

0

0

0

1

x

1 + x

x

1

1 + x

1 + x

1 + x

0
(•)

F2C2
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Clearly (F2C2, · ) is not a group (since 0.a = 0 ∀ a ∈ F2C2). Also (F2C2 \
{0}, · ) does not form a group (since (1 + x)2 = 0 and 0 is not an element of
F2C2 \ {0}.

Note : that the unit group of F2C2 is {1, x}.

U(F2C2) = {1, x} ∼= C2

U(F2C2)

· 1 x

1

x

1 x

1x

Conjecture 1.33 U(RG) = G.

Note that G is isomorphic (as a group) to a subgroup of U(RG) via the
embedding

θ : G →֒ U(RG) g 7→ 1.g

We often associate G with θ(G) < U(RG) and abusing the notation, we write
G < U(RG).

Recall that in F2C2, (1 + x)2 = 0. So 1 + x is the only zero divisor of F2C2.

Conjecture 1.34 RG = {0} ∪ U(RG)∪ZD(RG) (where ZD(RG) are the
zero divisors of G.

Consider (1) F3C2 and (2) F2C3.

(1) F3C2

F3C2 = {a.1 + b.x | a, b ∈ F3}. There are 3 choices for a ∈ {0, 1, 2} and there
are 3 choices for b ∈ {0, 1, 2} so there are 3.3 = 9 elements in F3C2.

(2) F2C3
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C3 = {1, x, x2}. F2C3 = {a.1 + b.x + c.x2 | a, b, c ∈ F3}. There are 2 choices
for a ∈ {0, 1}, 2 choices for b ∈ {0, 1} and there are 2 choices for c ∈ {0, 1}
so there are 2.2.2 = 8 elements in F2C3.

Now 3 ≤ |F2C3 ≤ 8 and C3 ⊳ U(F2C3). By Lagranges theorem |c3| divides
|U(F2C3)| so 3 | |U(F2C3)| and |U(F2C3)| ≤ 8, therefore |U(F2C3)| = 3 or 6.

Lemma 1.35 Let R be a ring of order m and G a group of order n. Then
RG is a finite group ring of size |R||G| = mn.

Proof. RG = {
∑

g∈G agg | ag ∈ R}. For each g, there are m choices for ag.

So there are m.m . . . m︸ ︷︷ ︸
|G|=n

-elements in RG. i.e. mn = |R||G|. �

Example 1.36 |F2C2| = |F2|
|C2| = 22 = 4. The group (F2C2, +) has order 4

so it is isomorphic to either C4 or C2×C2. If a ∈ F2C2, then 2.a = 0.a = 0.
So every element of F2C2 has order ≤ 2. Thus F2C2 ≇ C4 (since C4 has an
element of order 4). ∴ (F2C2, +) ∼= C2 × C2 (Klein-4-group).

Question : Is F2C2
∼= Z4 (isomorphic as rings) ? Answer : No. What is

the additive group of Z4

So (Z2, +) ∼= C4

+

0

1

2

3

0 1 2 3

0 1 2 3

1

2

3

2

3

0

3

0

1

0

1

2

Z4

Thus F2C2 and Z4 have non-isomorphic additive groups. So they are not
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isomorphic as rings.

1.2 Ring Homomorphisms and Ideals

Lemma 1.37 Let f : R −→ S be a ring homomorphism, then

(i) f(0r) = 0s.

(ii) f(−a) = −f(a).

Proof. (i) Take a ∈ R. f(a) = f(a + 0r) = f(a) + f(0r). Thus f(a) =
f(a) + f(0) = f(0) + f(a) ∀ a ∈ R. So

−f(a) + f(a) = 0s

= −f(a) + (f(a) + f(0r))

= (−f(a) + f(a) + f(0r)

= 0s + f(0r) = f(0r)

= 0s

∴ f(0r) = 0s

(ii) f(a + (−a)) = f(0r) = 0s = f(a) + f(−a)

∴ f(−a) = −f(a)

. �

Definition 1.38 Let L be a subset of the ring R. L is called a left ideal
of R if

(i) x, y ∈ L =⇒ x− y ∈ L.

(ii) x ∈ L, a ∈ R =⇒ ax ∈ L (left multiplication by an element of R).

∴ R.L = L
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Similarly we could define a right ideal of R. If L is a left ideal of R and a
right ideal of R, we say that L is a two-sided ideal of R.

*** (used in the same way that normal subgroups are used in group theory).

i.e. If N ⊳ G =⇒ G −→
G

N
, g 7→ g.N is a group homomorphism with kernal

N and image
G

N
, the factor group or quotient group of G by N .

G

N
= {gN : g ∈ G}.

Recall : 1st, 2nd and 3rd isomorphism theorems of groups.

Let I be an ideal of R. We write I ⊳ R. Notice that I is a ring (usually
without the multiplicative identity 1r). =⇒ I is a subring of R.

Example 1.39 Consider the ring (Z, +, ·). Let n ∈ Z. Then I = nZ =
{n.a : a ∈ Z} is a (two sided) ideal of Z, since

na− nb = n(a− b) ∈ nZ∀ a, b ∈ Z

c(n.a) = n(c.a) ∈ nZ∀ c ∈ Z

Example 1.40 Consider the ring (Z6, +, ·). What are the ideals of (Z6, +, ·)
? Now consider the subset I2 = {2.a : a ∈ Z6} = {0, 2, 4}. I2 is an ideal of
Z6} (exercise). I3 = {3.a : a ∈ Z6} = {0, 3} is an ideal of Z6} (exercise).
0 = {0Z6

}⊳ Z6}. Also Z6 E Z6. Note that Z6} is the only ideal of Z6} which
contains 1Z6

. Note : I1 = {1.a : a ∈ Z6} = Z6. Are there any more ideals of
Z6 ? Let I be an ideal of Z6. What is the size of I ?

Lemma 1.41 ( Langrange theorem for rings ) Let I be an ideal of a finite
ring R. Then |I| / |R|.

Proof. (R, +) is a group, (I, +) is a subgroup. Apply Lagranges theorem
(for groups), we get |I| / |R|. �

Applying this lemma to the previous example, we see that |I| = 1, 2, 3 or 6.
If |I| = 1, then I = {0Z6

}. If |I| = 6, then I = Z6. If |I| = 2, then I = {0, 3}.
If |I| = 3, then I = {0, 2, 4}. Thus Z6 has 4 ideals.



CHAPTER 1. INTRODUCTION 13

Example 1.42 Consider the ring (Z5, +, ·). Let I2 = {2.a : a ∈ Z5} =
{0, 2, 4, 1, 3} = Z5. Therefore the only ideals of Z5 are {0Z5

} and Z5. i.e. Let
I ⊳ Z5, then |I|/|Z5| so |I| = 1 or 5 so I = {0Z5

} or Z5

Let f : R −→ S be a ring homomorphism, then f(1r) = 1s is not necessarily
true.

Example 1.43 Define f : M2(Q) −→M3(Q) where

(
a b
c d

)
7→




a b 0
c d 0
0 0 0



.

Then f

(
0 0
0 0

)
=




0 0 0
0 0 0
0 0 0



 and f is a ring homomorphism. However

f(I2) = f

(
1 0
0 1

)
=




1 0 0
0 1 0
0 0 0



 6= I3.

Note that here f(A)f(I2) = f(a.I2) = f(A). So f(I2) seems to work like the
multiplicative identity on the range of f .

Let f : R −→ S be a ring homomorphism. Then Ker(f) = {x ∈ R : f(x) =
0}. If x, y ∈ Ker(f), then f(x + y) = f(x) + f(y) = 0 + 0 = 0. Also
f(x− y) = f(x)− f(y) = 0− 0 = 0.

Let x ∈ Ker(f), s ∈ R. Is xs ∈ Ker(f) ? f(xs) = f(x)f(s) = 0.f(s) = 0.
∴ xs ∈ Ker(f). So Ker(f) is an ideal of R.

Definition 1.44 A ring homomorphism f : R −→ S is called

(i) a monomorphism (or embedding) if f is injective.

(ii) an epimorphism if f is surjective.

Example 1.45 Z
f
→֒ Q where f(n) = n. Ker(f) = {0} ⊂ Z.

Example 1.46 Z
g

֌ 2Z where g(n) = 2n. Ker(g) = {0} ⊂ Z.

Example 1.47 Let p be a prime number. Define f : Z −→ Zp by
f(n) = n + pZ.
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f(n + m) = n + m + pZ. f(n) + f(m) = n + pZ + m + pZ = n + m + pZ.
∴ f(n + m) = f(n) + f(m). Also f(n−m) = f(n)− f(m).

f(nm) = nm + pZ.

f(n)f(m) = (n + pZ)(m + pZ)

= nm + npZ + mpZ + p2ZZ

= nm + p(nZ + mpZ + pZ)

= nm + pZ

Thus f(nm) = f(n)f(m) and f is a ring homomorphism.

Ker(f) = {n ∈ Z | f(n) = 0} = {n ∈ Z |n+pZ = 0Zp
= 0+pZ} = {np |n ∈ Z}

Since f(np) = np + pZ = p(n + Z) = pZ = 0 + pZ = 0. So f : Z −→ Zp has
kernal pZ.

Let I ⊳ R. Then consider the set R/I = {I + r : r ∈ R}. Define

• addition by (r + I) + (s + I) = (r + s) + I.

• multiplication by (r + I)(s + I) = (rs) + I.

R/I is a ring (check i.e. 0R/I = 0 + I, (r + I) + (−r + I) = 0 + I = 0R/I , and
so on ).

Consider the ring homomorphism f : R −→ R/I defined by f(r) = r + I.
What is Ker(f) ? Ker(f) = {r ∈ R : f(r) = 0} = {r ∈ R : f(r) = 0+I} = I
(Since if i ∈ I, we have f(i) = i + I = I).

Therefore given any ideal I of a ring R, we can come up with a ring homo-
morphism f : R −→ R/I such that I = Ker(f). Note that we often write
f(r) = r + I = r (r mod I).

Example 1.48 pZ ⊳ Z, pZ is the kernal of the homomorphism f : Z −→
Zp
∼= Z/Zp.
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1.3 Isomorphism Theorems

Theorem 1.49 (1st Isomorphism theorem for groups ) Let f ֌ S. Then
G/N ∼= S where N = Ker(f).

For rings , the kernal is an ideal. Let G be a group, H ⊳ G and N E G.
Then

G/N ∼= H/1

G/H ∼= N/1

also

G

1G

H N

Example 1.50 S3 =< x, y |x3 = y2 = 1, yxy = x2 >. Let’s construct a
lattice diagram of subgroups

Double lines means normality

S3

< x > < y > < xy > < x2y >

1S3

Now consider ω : R −→ R/I where ω(r) = r + I (the cononical projection).
Let J ⊇ I, then ω(J) = {j + I : j ∈ J} = J/I ⊂ R/I. J/I is not only a
subset, it is also an ideal of R/I i.e. J/I ⊳ R/I.
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= ℑ

= {0}

ω−1(ℑ) =

Ker(ω) =

ω

ω

ω

ω

R R/I

J J/I

J1 J1/I

I I/I

{0}

Note that a ring homomorphism preserves subsets and ideal.

Theorem 1.51 ( 2nd Isomorphism Theorem )

I + J

I
∼=

J

I ∩ J
also

I + J

J
∼=

I

I ∩ J

R

I + j

JI

I ∩ J

{0}
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Theorem 1.52 ( 3rd Isomorphism Theorem )





ω

ω
R/I {R/I} / {J/I}

R R/I

J J/I

J1 J1/I

I I/I

{0}



Chapter 2

Ideals And Homomorphisms of
RG

Let R be a ring (usually commuatative) and G a group. Then RG is a group
ring (defined before). Since RG is a ring, we can talk about ideals of G, ring
homomorphisms of RG and factor groups of RG.

Definition 2.1 Consider the function ε : RG −→ R defined by ε

(
∑

g∈G

agg

)
=
∑

g∈G

ag.

This function is called the augmentation map. ε maps RG onto R.

Let r ∈ R then ε(r.1) = r (onto). Let rg ∈ RG and rh ∈ RG, the
ε(rg) = ε(rh) = r. However rg 6= rh, thus ε is not one-to-one. ε is a

ring homomorphism from RG onto R (an epimorphism). Let α =
∑

g∈G

agg

and β =
∑

g∈G

bgg where α, β ∈ RG. Then

ε(α +β) = ε

(
∑

g∈G

(ag + bg)g

)
=
∑

g∈G

(ag + bg) =
∑

g∈G

ag +
∑

g∈G

bg = ε(α)+ ε(β)

18
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Now let α =

(
∑

g∈G

agg

)
and β =

(
∑

h∈G

bhh

)
.

ε(αβ) =

(
∑

g,h∈G

agbhgh

)
=
∑

g,h∈G

agbh

ε(α)ε(β) = ε

(
∑

g∈G

agg

)
ε

(
∑

h∈G

bhh

)
=

(
∑

g∈G

ag

)(
∑

h∈G

bh

)
=
∑

g,h∈G

agbh

∴ ε(α + β) = ε(α)ε(β) and ε is a ring homomorphism.

Ker(ε) = {α =
∑

g∈G agg | ε(α) =
∑

g∈G ag = 0}. Ker(ε) is non empty and
non trivial.

Example 2.2 rg + (−rh) ∈ Ker(ε) since ε(rg + (−rh)) = r − r = 0.

Now
RG

Ker(ε)
∼= R. Ker(ε) is an ideal called the augmentation ideal of RG

and is denoted by Ker(ε) = ∆(RG).

Let u ∈ U(RG). Say u.v = v.u = 1. Then ε(uv) = ε(1) = 1 = ε(u)ε(v) =
1 ∈ R. So ε(u) is invertible in R, with inverse ε(v). So ε(U(RG)) ⊂ U(R)
i.e. ε sends units of RG to units of R.

Let u ∈ ZD(RG). Say u.v = v.u = 0 where u, v 6= 0. Then ε(uv) =
ε(u)ε(v) = ε(0) = 0. Thus ε(u)ε(v) = 0. So either ε(u) = 0 or ε(v) = 0 or
ε(u) and ε(v) are zero divisors in R.

If R has no zero divisors then this forces ε(u) = 0 or ε(v) = 0.

Example 2.3 List all the elements of F3C2, U(F3C2) and ZD(F3C2).

C2 = {1, x} and F3 = {0, 1, 2}.F3C2 = {a1.1 + a2.x | ai ∈ F3}. Thus
|F3C2| = 3.3 = 32 = 9 (|F3|

|C2|).
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Writing the elements in lexicographical order :

0 + 0.x, 0 + 1.x, 0 + 2.x

1 + 0.x, 1 + 1.x, 1 + 2.x

2 + 0.x, 2 + 1.x, 2 + 2.x

F3C2 = {0, 1, 2, x, 2x, 1 + x, 1 + 2x, 2 + x, 2 + 2x}.

ε : F3C2 −→ F3

ε(α)

0

1

2

α ∈ F3C2

{0, 2 + x, 1 + 2x}

{1, x, 2 + 2x}

{2, 2x, 1 + x}

U(F3C2) = {1, x, 2, 2x}, since 12 = 1, , x2 = 1, 22 = 1 and (2x)2 = 1. In
a group inverses are unique, so we don’t need to multiply these anymore.
U(F3C2) ∼= C2 × C2 since it has no elements of order 4, so U(F3C2) ≇ C4.

(1 + x)(1 + x) = 1 + x + x + x2 = 2 + 2x 6= 1. (1 + x)(2 + x) = 2 + x +
2x + x2 = 0 6= 1. Note that these are zero divisors so they are not units.
Also (1 + 2x)(1 + 2x) = 1 + 2x + 2x + 4x2 = 2 + x and (1 + 2x)(2 + 2x) =
2 + 2x + 4x + 4x2 = 0.

∴ ZD(F3C2){1 + x, 2 + x, 1 + 2x, 2 + 2x}

Note F3C2) = U(F3C2) ∪ ZD(F3C2) ∪ {0}.

Conjecture 2.4 In general in any group ring RG, do we have

F3C2) = U(F3C2) ∪ ZD(F3C2) ∪ {0}

Lemma 2.5 Let I be an ideal of a ring R, with I 6= R. Then I contains no
invertible elements.
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Proof. Suppose u ∈ I, with u invertible (say u.v = v.u = 1). Now since I
is an ideal, we have v.i ∈ I ∀ i ∈ I. In particular, v.u = 1 ∈ I. If r is any
element of R, then r.1 ∈ I. So R ⊂ I. So R = I contradiction. �

Lemma 2.6 Let D be a division ring. Then

(i) D has no ideals (apart from {0} and itself).

(ii) D has no zero divisors (done before !).

Proof. (i) Let I ⊳ D, with I 6= {0}. Let x 6= 0 and x ∈ I. So 0 6= x ∈ D,
so x is invertible, by the previous lemma I = D.

(ii) Let u.v = 0 with u 6= 0 and v 6= 0 (and u, v ∈ D). Now u−1 and v−1

exists so u−1(uv) = u−1.0 =⇒ v = 0, which is a contradiction. �

Definition 2.7 An elementary matrix Ei,j is the matrix of all whose entries
are ) except for the (i, j)th entry which is 1.

Example 2.8

E1,2 =




0 1 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




Lemma 2.9 Let D be a division ring and R = Mn(D) (n×n matrices over
division ring D). Then Mn(D) has no ideals (apart from {0} and Mn(D)).

Proof. If n = 1, then this just part (i) of the above lemma. Let Bi =

Ei,hAEk,i. Now all entries of Bi equal ) except for the (i, i)th, which is ah,k.
Thus Bi = ah,kEi,i ∀ i ∈ {1, 2, . . . , n}. Now I was a (two sided) ideal, A ∈ I
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and Bi = Ei,hAEk,i so Bi ∈ I. (Now add up all the ideals). Let

B = B1 + B2 + · · ·+ Bn

= ah,k{E1,1 + E2,2 + · · ·+ En,n}

= ah,k




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




.

Thus B is invertible and B ∈ I. Thus (by the secind last lemma)

I = Mn(D)

�

Definition 2.10 Let R1 and R2 be rings. Define a new ring, the direct
sum of R1 and R2 as

R1 ⊕R2 = {(r1, r2) | r1 ∈ R1, r2 ∈ R2} (= R1 ×R2︸ ︷︷ ︸
cartesian product

)

Let (r1, r2) and (s1, s2) ∈ R1⊕R2. Define (r1, r2)+(s1, s2) = (r1 +s1, r2 +s2)
and (r1, r2)(s1, s2) = (r1s1, r2s2). This defines a ring (check!).

R1 ⊕ R2 is not a division ring since for any non-zero r ∈ R1 and sinR2, we
have (r, 0)(0, s) = (r.0, 0.s) = (0, 0) = 0 ∈ R1 ⊕ R2. So (r, 0) and (0, s) are
zero divisors. So (r, 0) and (0, s) are not invertible. So Hamilton would not
be pleased. We could define (R1 ⊕ R2) ⊕ R3 = R1 ⊕ R2 ⊕ R3 and . . . and
R1 ⊕R2 ⊕ . . .⊕R3.

Definition 2.11 A ring R is called a simple ring if it’s only ideals are
{0} and R (i.e. no non-trivial ideals).

Note : Mn(D) is a simple ring.

Definition 2.12 An element e ∈ R is called an idempotent if e2 = e.
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Example 2.13 In Z6, 3 is an idempotent since 32 = 9 = 3.

Example 2.14 In M2(F2),

(
1 0
0 0

)
and

(
0 0
0 1

)
are idempotents since

(
1 0
0 0

)
=

(
1 0
0 0

)(
1 0
0 0

)

(
0 0
0 1

)
=

(
0 0
0 1

)(
0 0
0 1

)

Definition 2.15 The center of R is

Z(R) = {z ∈ R | zr = rz ∀ r ∈ R}

Question : Is Z(R) a ring ?
Question : Is Z(R) an ideal ?

Definition 2.16 e is called a central idempotent if e2 = e and e ∈ Z(R).

Definition 2.17 A ring R is semisimple if it can be decomposed as a
direct sum of finitely many minimal left ideals. i.e. R = L1⊕· · ·⊕Lt, where
Li is a minimal left ideal.

Note : L is a minimal left ideal of R if L is a left ideal of R (L
l

⊳ R) and if
J is any other left ideal of R contained in L, then either J = {0} or J = L.

Example 2.18 Mn(D) is a semisimple ring. Let L1 =




D 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




and let L2 =




0 D 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




and . . . let Ln =




0 0 0 . . . D
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




.

For each i, Li is a minimal left ideal of R (check!). Also
Mn(D) = L1 ⊕ · · · ⊕ Ln so Mn(D) is semisimple (check!).
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Lemma 2.19 Let R be s ring. R is semisimple iff every left ideal of R is a
direct summand of R.

Example 2.20 In the above example L1⊕L2 is a left ideal of R and (L1⊕
L2)⊕ (L3 · · · ⊕ Ln) = R.

Theorem 2.21 Let R be a ring. R is semisimple iff every left ideal of R is
of the form L = Re, where e ∈ R is an idempotent.

Proof. (⇒) Assume that R is semisimple. Let L
l

⊳ R. By the previous

lemma, L is a direct summand of R. So there exists a left ideal L′
l

⊳ R such
that L⊕ L′ = R. So 1 = x + y for some x ∈ L and y ∈ L′. ( Question : Is
this decomposition unique ?).
Then x = x.1 = x(x+y) = x2+xy So xy︸︷︷︸

∈L′

= x− x2

︸ ︷︷ ︸
∈L

. Thus xy ∈ L∩L′ = {0}.

Thus xy = 0 = x−x2, so x = x2. Hence, x is an idempotent. We have shown
L = Rx where x ∈ L so Rx ⊂ L. We must show L ⊂ Rx. Let a ∈ L. Then
a = a.1 = a(x + y) = ax + ay = a. ∴ a− ax︸ ︷︷ ︸

L

= ay︸︷︷︸
L′

∈ L ∩ L′ = {0}. So

a− ax = 0 so a = ax ∈ Rx. Thus L ⊂ Rx. So L = Rx.

(⇐) assume that every left ideal of R is of the form L = Re for some
idempotent e ∈ R. We will show that every left ideal is a direct summand

of R. Let L
l

⊳ R. Then L = Re. Let L′ = R(1 − e). Then L′ is a left ideal
of R. (Note (1− e)2 = 1− e− e + e2 = 1− 2e + e = 1− e). We must show
that L⊕ L; = R (i.e. L + L′ = R and L ∩ L′ = {0}).

Let x ∈ R Then x = x.1 = x(e + (1 − e)) = xe + x(1 − e) ∈ L + L′.
∴ R = L ⊕ L′. Let x ∈ L ∩ L′ = Re ∩ R(1 − e). Then x = r.e = s(1 − e),
r, s ∈ R. Thus x.e = (r.e).e = r.e2 = r.e = x. Also x.e = (s(1 − e))e =
s(e− e2) = s(0) = 0. Thus x = 0 so L ∩ L′ = {0} and so R = L⊕ L′. �

Let α =
∑

g∈G

agg ∈ RG. Now all but finitely many of the ag
’s are non-zero.

We define the support of α as

supp α = {g ∈ G | ag 6= 0}

The group < supp α > (generated by the support of α) is a finitely generated
group. So R < supp α > ⊂ RG.
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Proposition 2.22 The set {g − 1 | g ∈ G, g 6= 1} is a basis for ∆(G) over
R.

i.e. ∆(G) = {
∑

g∈G

ag(g − 1) | g ∈ G, g 6= 1} and the g − 1 are linearly inde-

pendant over R.

Proof. Let α =
∑

g∈G

agg ∈ ∆(G). So
∑

g∈G

ag = 0. Thus α =
∑

g∈G

agg − 0 =

∑

g∈G

agg −
∑

g∈G

ag =
∑

g∈G

ag(g − 1) so this is a spanning set for ∆(G). We will

show linear independance :

Let
∑

g∈G

ag(g − 1) = 0. Then 0 =
∑

g∈G

agg −
∑

g∈G

ag =
∑

g∈G

agg = 0⇐⇒ ag =

0 ∀ g ∈ G. Since G is linear independant over R, by the definition of the
group ring RG.

�

Note : RG has dimension |G| over R. ∆(G) has dimension |G| − 1 over R.
If R is a field then these are vector spaces. Otherwise they are R-modules.

Proposition 2.23 Let R be a commutative ring. The map

∗ : RG −→ RG where
∑

g∈G

agg 7→
∑

g∈G

agg
−1

is an involution. Then ∗ has the following properties :

(i) (α + β)∗ = α∗ + β∗

(ii) (αβ)∗ = α∗β∗

(iii) (α∗)∗ = α

Proof. Homework 2. �

Proposition 2.24 Let I ⊳ R and let G be a group. Then

IG = {
∑

g∈G

agg | ag ∈ I}⊳ RG
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Also
RG

IG
∼=

(
R

I

)
G.

Proof. (a) IG is a commutative group under + X. Let α =
∑

g∈G

agg ∈ IG

and β =
∑

h∈G

bhh ∈ RG (so ag ∈ I and bh ∈ R forall g, h ∈ G).

αβ =

(
∑

g∈G

agg

)(
∑

h∈G

bhh

)
=
∑

g,h∈G

agbh︸︷︷︸
∈I

gh ∈ IG

So IG is an ideal of RG.

(b)
RG

IG
= {β + IG | β ∈ RG} and

(
R

I

)
G = {

∑

g∈G

(ag + I)g | ag + I ∈
R

I
}. i.e.

ag ∈ R and g ∈ G. Define

θ :
RG

IG
−→

(
R

I

)
G

by θ(β + IG) = θ

(
∑

g∈G

bgg + IG

)
=
∑

g∈G

(bg + I)G. We must show that θ is

an isomorphism.

θ(α+ IG+β + IG) = θ(α+β + IG) = θ(
∑

(ag + bg + IG) =
∑

(ag + bg + I)g.
Also θ(α + IG) + θ(β + IG) =

∑
(bg + I)g +

∑
(ag + I)g =

∑
(ag + bg + I)g

X.
θ((α + IG)(β + IG)) = θ(αβ + IG) = θ(

∑

g∈G

agg
∑

h∈G

bhh + IG) =
∑

g,h∈G

(agbh + I)gh.

Also θ(α + IG)θ(β + IG) = (
∑

(ag + I)g) (
∑

(bh + I)h) =
∑

(ag + I)(bh +
I)gh =

∑
(agbh + I)gh X. ∴ θ is a ring homomorphism. It remains to show

that θ is bijective but we will do this on homework 2. �
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Group Ring Representations

Definition 3.1 Let G be a finite group and R a ring. The R-module RG
(the group ring RG) with the natural multiplication gα (g ∈ G, α ∈ RG).
Now given g ∈ G, g acts on the basis of RG by left multiplication and
permutes the basis elements. Define T : G −→ GLn(R) where g 7→ Tg

and Tg acts on the basis elements by left multiplication. So if G = {g1 =
1, g2, . . . , gn} and Tg gi = ggi ∈ G. The function T from G to GLn(R) is
called the (left-regular) group representation of the finite group G over
the ring R.

Think of Tg as left multiplication by a group element or left multiplication
of a column vector by a n× n matrix.

Lemma 3.2 Let G be a finite group of order n. Let R be a ring. Then
the group representation T is an injective homomorphism (monomorphism)
from G to GLn(R).

Proof. Let g, h ∈ G and gi ∈ G where gi are the basis elements. We
want to show T (gh) = T (g)T (h). Now T (gh).(gi) = (gh).gi = g(hgi) =
Tg(Th(gi)) ∀gi ∈ G = T (g)T (h)(gi). ∴ T (gh) = T (g)T (h).

1-1 : We must show that if T (g) = In ∈ GLn(R) =⇒ g = 1G. Let
g ∈ G with T (g) = In. Then T (g)(gi) = gi ∀gi ∈ G. In particular (with
gi = g1 = 1G), T (g)(1) = In =⇒ g.1 = 1 =⇒ g = 1. �

Example 3.3 Let G = C3 =< a | a3 = 1 >.

27
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∴ RG = {λ1.1+λ2.a+λ3.a
2 |λi ∈ R}. What does g.α look like (where g ∈ G

and α ∈ RG) ?

1(λ1.1 + λ2.a + λ3.a
2) = λ1.1 + λ2.a + λ3.a

2

(∗) a(λ1.1 + λ2.a + λ3.a
2) = λ3.1 + λ1.a + λ2.a

2

(∗∗) a2(λ1.1 + λ2.a + λ3.a
2) = λ2.1 + λ3.a + λ1.a

2

Correspondance

1←→




1
0
0



 , a←→




0
1
0



 , a2 ←→




0
0
1





(these are the basis elements which are acted upon, permuted by left-multiplication
by 3× 3 matrices).

T : 1 −→




1 0 0
0 1 0
0 0 1



,

a −→




0 0 1
1 0 0
0 1 0



 from (∗) a(λ1.1+λ2.a+λ3.a
2)←→ a




λ1

λ2

λ3



 =




λ3

λ1

λ2



,

a2 −→




0 1 0
0 0 1
1 0 0



 from (∗∗) a2(λ1.1 + λ2.a + λ3.a
2) ←→ a2




λ1

λ2

λ3



 =




λ2

λ3

λ1



.
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Note

a(λ1.1 + λ2.a + λ3.a
2)

←→




0 0 1
1 0 0
0 1 0












λ1

0
0



+




0
λ2

0



+




0
0
λ3









=




0 0 1
1 0 0
0 1 0








λ1

λ2

λ3



 =




λ3

λ1

λ2





←→ λ3.1 + λ1.a + λ2.a
2)

We can extend the definition of a left regular group representation to a left
regular group ring representation as follows :

Let R be a commutative ring and G a finite group. Define

T : RG −→Mn(R),
∑

g∈G

agg 7→
∑

g∈G

agTg

where Tg acts on the basis G = {g1 = 1, g2, . . . , gn} by left multiplication (i.e.
Tg(gi) = ggi.

Lemma 3.4 T above is a ring (write Tα = T (α)) homomorphism from the
group ring RG to the set of n×n matrices over R. Also T (rα) = rT (α) ∀ r ∈
R, ∀ α ∈ RG. Also if R is a field then T : RG −→Mn(R) is injective.

Proof. Homework 2. �

If R is commutative then define

• det(α) =det(T (α))

• tr(α) =tr(T (α))

• eigenvalue of (α) = eigenvalue of (T (α))

• eigenvectors of (α) = eigenvectors of (T (α)) where α ∈ RG.
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Lemma 3.5 Let K be a field and G a finite group.

(i) If α ∈ KG is nilpotent (i.e. ∃m ∈ N such that αm = 0), then the
eigenvalues of (T (α)) are all zero.

(ii) If β ∈ KG is a unit of finite order (i.e. ∃n ∈ N such that βn = 1),

then the eigenvalues of (T (α)) are all nth roots of unity.

(iii) If f(γ) = 0, ∃ γ ∈ KG and ∃ f ∈ K[x] (the set of all polynomials over
K) then f(λi) = 0 ∀ eigenvalues λi of (T (γ))

Proof. Note that (iii) =⇒ (i) and (ii). (i) Let α ∈ KG with αm = 0.
Let λ be an eigenvalue of (T (α)) i.e. (T (α))X = λX where X is a n × 1
column vector with entries in K. Now (T (α))m.X = λm.X. (T (α))m.X =
T (α)m.X = T (0).X = 0n×nX = 0n×1 since T is a ring homomorphism.
∴ λm.X = 0n×1 =⇒ λm = 0n×1 (since K has no zero divisors) =⇒ λ = 0.

(ii) Let β ∈ KG with βn = 1. Let λ be an eigenvalue of (T (β)) i.e.
(T (β))X = λX. Now (T (β))n.X = λn.X. (T (β))n.X = T (βn).X =
T (1).X = In×n.X = X. ∴ λn.X = X =⇒ λn = 1 (since K is a field)

=⇒ λ is an nth root of unity.

(iii) Let f(γ) = 0 ∀ γ ∈ KG and ∃ f ∈ K[x]. Let λ be an eigenvalue of
(T (γ)) ∴ (T (γ))X = λX. =⇒ f(T (γ)).X = f(λ).X since T is a K − linear
ring homomorphism on RG. f(T (γ)).X = T (f(γ)).X = T (0).X = 0.X = 0.
∴ f(λ).X = 0 =⇒ f(λ) = 0. �

Example 3.6 Let R be a ring and let G be a finite group. We define the
trivial group representation of G as :

T : G −→ GLn(R) g 7→ In×n =




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




T (gh) = In×n. T (g)T (h) = In×n.In×n = In×n. So T : G −→ {In×n} ∼= C1 is
a group epimorphism.
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We now extend T to a group ring representation. T : RG −→ Mn(R)
where

∑

g∈G

agg 7→
∑

g∈G

agT (g) =
∑

g∈G

(agIn×n) = (
∑

g∈G

ag)In×n = ε

(
∑

g∈G

agg

)
In×n

Example 3.7 Let 2g + (−2h) ∈ RG. Then T (2g + (−2h))

= ε(2g+(−2h))In×n = (2+−2)In×n = 0In×n = 0n×n =




0 0 0 . . . 0
0 0 0 . . . 0
0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




.

Example 3.8 Let 2g + (−2h) + 21 ∈ RG. Then T (2g + (−2h) = 21)

= ε(2g+(−2h)+21)In×n = (2+−2+21)In×n = 21In×n =




21 0 0 . . . 0
0 21 0 . . . 0
0 0 21 . . . 0
...

...
...

. . .
...

0 0 0 . . . 21




.

Note T : RG −→Mn(R) is onto and the Ker(T ) = ∆(RG).

Lemma 3.9 Let G be a finite group and K a field. Let T be the left regular
representation of KG and let γ =

∑
g∈G cgg ∈ KG. Then the trace of T (γ)

is
tr ( T (γ) ) = |G|.c1

(where c1 is the coefficient of g1 = 1. For example if γ = 2 + 3g + 4h ∈ KG,
then c1 = 2).
Proof. The traces of similar matrices are the same and so tr (T (γ) ) is
independant of choice of basis. Fix the basis G = {g1 = 1, g2, . . . , gn} ( a K-

basis of KG). ∴ T (γ) = T

(
∑

g∈G

cgg

)
=
∑

g∈G

cgT (g) =
n∑

i=1

cgi
T (gi). If g 6= 1,

then ggi 6= gi ∀ i so g permutes the basis of KG.
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So the matrix of T (g) has all zero’s in it’s main diagonal. Hence the
tr( T (g) ) = 0 ∀ g ∈ G except for g = 1.

∴ tr ( T (γ) ) = tr

(
n∑

i=1

cgi
gi

)

=
n∑

i=1

cgi
tr (T (gi))

= cg1
tr (T (g1)) + cg2

tr (T (g2)) + · · ·+ cgn
tr (T (gn))

= cg1
tr




1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1




+ 0 + · · ·+ 0

= cg1
.|G|

= c1.|G|

�

Theorem 3.10 (Berman-Higman) Let γ =
∑

g∈G

cgg be a unit of finite or-

der in ZG, where G is a finite group and c1 6= 0. Then γ = ±1 = c1.

Proof. Let |G| = n and let γm = 1. Considering ZG as a subring of CG, we
will consider it’s left regular representation and apply the previous lemma.
Then tr ( T (γ) ) = n.c1. Now γm = 1 therefore all the eigenvalues of T (γ)

are the nth roots of unity.

∴ tr ( T (γ) ) = tr (T

(
n∑

i=1

cgi
gi

)
) =

∑
cgtr ( T (g) ) =

∑
(eigenvalue of tr ( T (γ)))

Now T (γ) is similar to a diagonal matrix D (T (γ) ∽ D). So tr ( T (γ) ) =tr D
=
∑

diagonal elements of D =
∑

eigenvalues of D =
∑

eigenvalue of T (γ)
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=
n∑

i=1

ηi where ηi is an nth roots of unity.

∴ nc1 =
n∑

i=1

ηi

∴ |nc1| = |
n∑

i=1

ηi| ≤
n∑

i=1

|ηi| = n.

∴ |c1| ≤ 1 =⇒ c1 = ±1

∴ nc1 =
n∑

i=1

ηi = n or− n, so ηi = ηi ∀ i

so nc1 = nηi =⇒ ηi = ±1 ∀ i

∴ T (γ) ∽ D = I or I

∴ T (γ) = I or I

But T : CG −→Mn(C) is injective, so γ = ±1 (= c1). �

Corollary 3.11 Let γ ∈ Z(U(ZG)) where γm = 1 and G is finite. Then
γ = ±g ∃ g ∈ G. (i.e. all central torsion units are trivial ).

Proof. Let γ ∈ Z(U(ZG)) with γm = 1 and |G| = n. Let γ =
∑n

i=1 cgi
gi

and let cg2
6= 0 ∃ g2 ∈ G. ∴ γg2

−1 =
∑n

i=1 cgi
gig2

−1 (⋆) is a unit of finite order
in ZG ( Let g2

m2 = 1, then (γg2
−1)m.m2 = γm.m2(g2

−1)m.m2 = 1.1 = 1 since γ
is central).

Now from (⋆) the coefficient of 1 in γg2
−1 is cg2

6= 0. Now applying the
Berman-Higman theorem to γg2

−1 to get that

γg2
−1 = ±1 = cg2

=⇒ γ = ±1.g2 = ±g2 ∃ g2 ∈ G

�

Theorem 3.12 (Higman) Let A be a finite abelian group. Then the group
of torsion units of ZA equals ±A.
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Example 3.13 What are the torsion units of ZC3 ? Just ±C3.

If C3 =< x |x3 = 1 >= {1, x, x2, }, then the torsion units of ZC3 are
±C3 = {1, x, x2,−1,−x,−x2} ∼= C3×C2 =< x > × < −1 >∼= C6

∼=< −x >.

Question : Are the torsion units of RG equals ±G or U(R).G for all groups
G and rings R ?
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Decomposition of RG

Theorem 4.1 Let R be a semisimple ring with

R = ⊕t
i=1Li

where the Li are minimal left ideals. Then ∃ e1, e2, . . . , en ∈ R such that

(i) e 6= 0 is an idempotent for i = 1, . . . , t.

(ii) If i 6= j, then eiej = 0.

(iii) e1 + e2 + · · ·+ et = 1.

(iv) ei cannot be written as ei = e′i + e′′i (where e′i and e′′i are idempotents
such that e′ie

′′
i = 0 = e′′i e

′
i ).

Conversely, if ∃ e1, e2, . . . , et ∈ R satisfying the four conditions above, then
the left ideals Li = Rei are minimal and R = ⊕t

i=1Li (and ∴ R is semisimple).
Proof. (⇒). Let R = ⊕t

i=1Li, where Li is a minimal left ideal (for i =
{1, 2, . . . , t}).

(iii) 1 ∈ R, so 1 = e1 + e2 + · · ·+ et ∃ ei ∈ Li.

(i) Indeed, ei = 1.ei = (e1 + e2 + · · ·+ et)ei = e1ei + e2ei + · · ·+ ei
2 + · · ·+ et.

=⇒ ei − ei
2

︸ ︷︷ ︸
∈Li

= e1ei + e2ei + · · ·+ ei−1ei + ei+1ei + · · ·+ et︸ ︷︷ ︸
L1⊕L2⊕···⊕Li−1⊕Li+1⊕···⊕Lt

.

∴ ei−ei
2 ∈ L1⊕L2⊕· · ·⊕Li−1⊕Li+1⊕· · ·⊕Lt =⇒ ei−ei

2 = 0 =⇒ ei = ei
2.

35
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(ii) ei = (0, . . . , 0, 1.ei, 0, . . . , 0) ∈ L1 ⊕ · · · ⊕ Lt. ∴ eiej =
(0, . . . , 0, 1.ei, 0, . . . , 0)(0, . . . , 0, 1.ej, 0, . . . , 0) = (0, . . . , 0) = 0.

(iv) Assume that (iv) does not hold, so ei = e′i + e′′i , (where e′i and e′′i are
idempotents such that e′ie

′′
i = 0 = e′′i e

′
i ). Note that R = ⊕t

i=1Li = ⊕t
i=1Rei.

Rei ⊂ Li since ei ∈ Li and Li is a left ideal. Show Li ⊂ Rei. Let a ∈ Li.
Then a = a.1 = a(e1 + e2 + · · ·+ et) = ae1 + ae2 + · · ·+ aet.

=⇒ a− aei︸ ︷︷ ︸
∈Li

= ae1 + ae2 + · · ·+ aei−1 + aei+1 + · · ·+ aet︸ ︷︷ ︸
L1⊕L2⊕···⊕Li−1⊕Li+1⊕···⊕Lt

.

∴ a− aei = 0 =⇒ a = aei ∈ Rei and so Rei = li.
Li = Rei = R(e′i + e′′i ) = Re′i ⊕Re′′i . Now Re′i and Re′′i are left ideal so Li is
not minimal. This is a contradiction.

(⇐) skip. �

Note : A set of idempotents {e1, e2, . . . , et} with properties (i),(ii) and
(iii) above are called complete family of orthogonal idempotents. If
{e1, e2, . . . , et} has the property of (i)-(iv), then it is called a set of primitive
idempotents.

Theorem 4.2 (Wedderburn-Artin Theorem ) R is a semisimple ring
if and only if R can be decomposed as a direct sum of finitely many matrix
rings over division rings.

i.e. R ∼= Mn1
(D1)⊕Mn2

(D2)⊕ · · · ⊕Mns
(Ds)

where Di is a division ring and Mni
(Di) is the ring of ni × ni matrices over

Di.

Theorem 4.3 Let R be a semisimple ring. Then the wedderburn-artin de-
composition above is unique.

i.e. R ∼= ⊕s
i=1Mni

(Di) ∼= ⊕
t
i=1Mmi

(Di′) =⇒ s = t

and after permuting indices ni = mi and Di = Di′ ∀ i ∈ 1, . . . , s.

Theorem 4.4 (Maschke’s Theorem ) Let G be a group and R a ring.
Then RG is semisimple if the following conditions hold :
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(i) R is semisimple

(ii) G is finite

(iii) |G| is invertible in R.

Corollary 4.5 Let G be a group and K a field. Then KG is semisimple if
and only if G is finite and the characteristic K ∤ |G|.

Proof. First note that any field K is semisimple (K = M1(K) and use a
previous lemma).
(⇐) Let |G| <∞ and charK ∤ |G|. So |G| ∈ K \ {0}.
(⇒) |G| is invertible in K. Now apply maschke’s theorem =⇒ let KG be
semisimple. G is finite by maschke’s and also |G| is invertible in K so
|G| ∈ K \ {0}. So |G| is not a multiple of char K ∈ K. ∴ K ∤ |G|.

�

Theorem 4.6 Let G be a finite group and K a finite field such that char
K ∤ |G|. Then KG ∼= ⊕s

i=1Mni
(Di) where Di is a division ring containing

K in it’s center and

|G| =
s∑

i=1

(ni
2.dimK(Di))

Definition 4.7 A field K is algebraically closed if it contains all of the
roots of the polynomials in K[x].

Example 4.8 C is algebraically closed, while H is not.

Corollary 4.9 Let G be a finite group and K an algebraically closed field,
where char K ∤ |G|. Then

KG ∼= ⊕s
i=1Mni

(K) and |G| =
s∑

i=1

ni
2

Example 4.10 CC3. Note that C3 is finite and char C = 0 ∤ 3 so maschke’s
theorem does apply and

CC3
∼= ⊕s

i=1Mni
(Di) = ⊕s

i=1Mni
(C) by the corollary above
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Counting dimensions we see that 3 =
s∑

i=1

ni
2 =

3∑

i=1

12. ∴ Di = C, ni = 1 ∀ i

and s = 3. ∴ CC3
∼= C ⊕ C ⊕ C. ∴ U(CC3) ∼= U(C ⊕ C ⊕ C) = U(C) ×

U(C)× U(C).
The zero divisors of CC3 correspond bijectively to the zero divisors of

C⊕ C⊕ C

= {(a, b, 0) | a, b ∈ C} ∪ {(a, 0, c) | a, c ∈ C} ∪ {(0, b, c) | b, c ∈ C}

Example 4.11 CS3. S3 is finite and C = 0 ∤ 6 so maschke’s theorem does
apply and

CS3
∼= ⊕s

i=1Mni
(Di) = ⊕s

i=1Mni
(C)

6 = 12 + 12 + 22 or 6 =
6∑

i=1

12. So CS3
∼= C⊕ C⊕M2(C) or

CS3
∼= C ⊕ C ⊕ C ⊕ C ⊕ C ⊕ C. But ⊕6

i=1C is a commutative ring so
CS3 ≇ ⊕6

i=1C.
∴ CS3

∼= C⊕C⊕M2(C) and ∴ U(CS3) ∼= U(C)×U(C)×GL2(C). The zero
divisors of CS3 correspond bijectively to the zero divisors of C⊕C⊕M2(C).

= {(a, b, A) | a, b,∈ C, A ∈ ZD(M2(C))}

= {(a, 0, A) | a,∈ C, A ∈ ZD(M2(C))} ∪ {(0, b, A) | b,∈ C, A ∈ ZD(M2(C))}

Example 4.12 F2C2 does not compose as ⊕s
i=1Mni

(Di) since 2|2 (i.e char
F2 | |G|).

Theorem 4.13 (Wedderburn) A finite division ring is a field.

Example 4.14 F3C2. Maschke’s theorem applies since |C2| <∞ and char

F3 ∤ |C2| . ∴ F3C2
∼= ⊕s

i=1Mni
(Di). 2 =

s∑

i=1

(ni
2. dim F3

(Di)). Note that F3

is not algebraically closed (check). So we need dim F3
(Di). Now 2 = 1+1 =

1.2. So dim F3
(D) = 1 or 2. ∴ F3C2

∼= F3 ⊕ F3 or ∴ F3C2
∼= D where

dim F3
(D) = 2.

∴ F3C2
∼= F3 ⊕ F3 or F32

Question : Which one is it ?
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Theorem 4.15 The unit group of any finite field Fpn (with p a prime) is
cyclic of order pn − 1. So U(Fpn) ∼= Cpn−1. So any element of Fpn has
(multiplicative) order dividing pn − 1.

Example 4.16 Consider F5. 1 = 1. 22 = 4, 23 = 3, 24 = 1. 32 = 4,
33 = 2, 34 = 1. 42 = 1. Therefore the elements of U(F5) have order 1, 4, 4, 2.
These all divide 5− 1 = 4.

Thus U(F3C2) ∼= U(F3)× U(F3) = C2 × C2 or U(F3C2) ∼= U(F32) = C32−1 =
C8. However (by homework 1) U(F3C2) ∼= C2 × C2. So F3C2 ≇ F32 so

F3C2
∼= F3 ⊕ F3

(Alternatively, note that U(F3C2) and F3 ⊕ F3 contain zero divisors but F32

does not).

Theorem 4.17 Let G be a finite group and K a field such that char K ∤ |G|.
Then

KG ∼= ⊕s
i=1Mni

(Di) ∼= K ⊕⊕s−1
i=1Mni

(Di)

(i.e. the field itself appears at least once as a direct summand in the Wedderburn-
Artin decomposition).
Proof. Later �

Lemma 4.18 Let K be a finite field. Then if char K ∤ |G| <∞, then

KG ∼= ⊕s
i=1Mni

(Ki)

where the Ki are fields (i.e. all the division rings appearing are fields).

Proof. Clearly KG ∼= ⊕s
i=1Mni

(Di) where the Di are division rings. But Di

is a division ring such that dimKDi < ∞ (since G is finite). Now Wedder-
burn’s theorem implies that Di must be a field. �

Example 4.19 Consider F5S3. F5S3
∼= ⊕s

i=1Mni(Di) ∼= F5⊕ ⊕
s−1
i=1Mni

(Di) ∼=
F5 ⊕⊕

s−1
i=1Mni

(Ki).
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∴ ⊕s−1
i=1Mni

(Ki) is a 5-dimensional vectors space over F5. But F5S3 is
non-commutative so ni > 1 ∃ i.

∴ ⊕s−1
i=1Mni

(Ki) = F5 ⊕M2(F5)

∴ F5S3
∼= ⊕s

i=1Mni(Ki) ∼= F5 ⊕ F5 ⊕M2(F5)

∴ U(F5S3) ∼= U(F5)× U(F5)× U(M2(F5)) ∼= C4 × C4 ×GL2(F5)

GL2(F5) = {A ∈M2(F5) | det A = 0} = {A ∈M2(F5) | rows of A are linearly independant.

Check :

(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
. Now let’s count the size of

GL2(F5):

There are 52 − 1 = 24 choices for the first row (not including the zero row)
and there are 52 − 5 = 20 choices for the second row (not a multiple of the
first row). ∴ |GL2(F5)| = (52 − 1)(52 − 5) = 480. ∴ U(F5S3) has order
4.4.480 = 7680.

Theorem 4.20 GL2(Fp) is a non abelian group of order (p2 − 1)(p2 − p).
GL2(Fpn) is a non abelian group of order (p2n − 1)(p2n − pn). GL3(Fpn) is a
non abelian group of order ? (Homework).

Definition 4.21 Let x ∈ G be an element of order n (i.e. xn = 1). Then
define

x̂ = 1 + x + x2 + · · ·+ xn−1 ∈ RG

Definition 4.22 Let H < G (H-finite so H = {h1, h2, . . . , hn}). Then
define

Ĥ = h1 + h2 + · · ·+ hn ∈ RH ⊂ RG.

So x̂ =< x >∈ R < x > ⊂ RG.

Lemma 4.23 Let H be a finite subgroup of G and R any ring (with unity).

If |H| is invertible in R then eH =
1

|H|
.Ĥ ∈ RH is an idempotent. Moreover

if H ⊳ G then eH =
1

|H|
.Ĥ is central in RG.
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Proof. (i) H < G.

eH
2 =

1

|H|
.Ĥ

1

|H|
.Ĥ

=
1

|H|2

n∑

i=1

hiĤ where |H| = n.

=
1

|H|2

n∑

i=1

Ĥ

=
1

|H|2
.n.Ĥ

=
1

|H|2
.|H|.Ĥ

=
1

|H|
.Ĥ = eH

(ii) Let H ⊳ G. We will show that eH commutes with every element of
RG. It suffices to show that eH commutes with every element of G. So

we must show that eH
g = g−1eHg = eH ∀ g ∈ G. Now eH

g = g−1 1

|H|
.Ĥg

=
1

|H|
g−1(h1 + h2 + · · ·+ hn)g =

1

|H|
(h1 + h2 + · · ·+ hn) = eH . �

Definition 4.24 Let X be a subset of RG. Then the left-annihilator of
X in RG is

annl(X) = {α ∈ RG |α.x = 0 ∀ x ∈ X}

Similarly we can define the right-annihilator of X in RG is

annr(X) = {α ∈ RG |x.α = 0 ∀ x ∈ X}

Definition 4.25 ∆R(G,H) = {
∑

h∈H

αh(h− 1) |αh ∈ RG} We usually write

∆R(G,H) = ∆(G,H).

Note : ∆(G,H)
l

⊳ RG (left ideal, check).
Note : ∆(G,G) = ∆(G).
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Lemma 4.26 Let H < G and R a ring. Then annr(∆(G,H)) 6= 0 iff H is
finite. In this case

annl(∆(G,H)) = Ĥ.RG.

Furthermore, if H ⊳ G then Ĥ is central in RG and

annr(∆(G,H)) = annl(∆(G,H)) = Ĥ.RG = RG.Ĥ

Proof. (⇒). Let’s assume that annr(∆(G,H)) 6= 0 and let 0 6= α =∑
agg ∈ annr(∆(G,H)). So if h ∈ H we get (h − 1)α = 0 (since h − 1 ∈

∆(G,H)).
=⇒ hα = α, so

∑
agg =

∑
aghg. Let g0 ∈ supp α, so αg0

6= 0. So
hg0 ∈ supp α ∀ h ∈ H. But supp α is finite so H is finite.

(⇐). Conversely, let H be finite. ∴ Ĥ exists and Ĥ ∈ annr(∆(G,H)).
∴ annr(∆(G,H)) 6= 0.

” In this case . . . ” : Assume that annr(∆(G,H)) 6= 0 i.e. H is finite. Let
0 6= α =

∑
agg ∈ annr(∆(G,H)). As before αg0

= αhg0
.

Now we can partition G into it’s cosets (generated by H) to get

α =
∑

agg

= ag0
Ĥg0 + ag1

Ĥg1 + · · ·+ agt
Ĥgt

= Ĥ

(
t∑

i=1

agi
gi

)

= ĤB ∃ B ∈ RG

∴ annr(∆(G,H)) ⊂ Ĥ.RG.

Clearly Ĥ.RG ⊂ annr(∆(G,H)) (since (h− 1)ĤRG = 0.RG = 0).
”Furthermore . . .” easy. �

Proposition 4.27 Let R be a ring and H ⊳ G. If |H| is invertible in R

then letting eH =
1

|H|
.Ĥ we have

RG ∼= RG.eH ⊕RG(1− eH)

where RG.eH
∼= R(G/H) and RG(1− eH) ∼= ∆(G,H).
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Proof. eH is a central idempotent. By the Pierce decomposition

RG ∼= RG.eH ⊕RG(1− eH)

Now show RG.eH
∼= R(G/H). Consider φ : G −→ GeH where g 7→ geH . This

is a group epimorphism since φ(gh) = gheh = gheH
2 = geHheH = φ(g)φ(h).

Ker φ = {g ∈ G | geH = eH} = {g ∈ G | geH−eH = 0}= {g ∈ G | (g−1)eH =

0}=H since (g − 1)
1

|H|
Ĥ = 0 =⇒ gĤ = Ĥ.

∴
G

Kerφ
=

G

H
∼= Im φ = GeH

(by the 1st Isomorphism Theorem of Groups). Now GeH is a basis of the
group ring RGeH so RG.eH

∼= R(G/H).

Now show RG(1 − eH) ∼= ∆(G,H). RG(1 − eH) = {α ∈ RG |αRGeH = 0}

= ann(RGeH). Clearly, ∆(G,H) ⊂ ann(RGeH) since
∑

h∈H

αh(1− h)RGeH

=
∑

h∈H

αh(1− h)
1

|H|
.ĤRG = 0. It remains to show that ann(RGeH) ⊂ ∆(G,H)

(skip). �

Corollary 4.28 Let R be a ring and G a finite group with |G| invertible in
R. Then

RG ∼= R⊕∆(G).

Proof. Let H = G ⊳ G in the previous proposition.

∴ RG ∼= R(G/G)⊕∆(G,G)
∼= R{1} ⊕∆(G)
∼= R⊕∆(G).

�

Lemma 4.29 Let H < G and S a set of generators of H.Then {s−1 | s ∈ S}
is a set of generators of ∆(G,H), as a left ideal of RG.
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Proof. Let H =< s > . Let 1 6= h ∈ H ∴ h = s1
ε1s2

ε2 . . . sr
εr , where si ∈ S

and εi = ±1. Recall

∆R(G,H) = {
∑

h∈H

αh(h− 1) |αh ∈ RG}.

So we must show that h ∈ H =⇒ h − 1 ∈ RG{s − 1 | s ∈ S}. Now h − 1 =
s1

ε1 . . . sr
εr − 1=(s1

ε1 . . . sr−1
εr−1)(sr

εr − 1) + (s1
ε1 . . . sr−1

εr−1 − 1).
If εr = 1 then we are done (by induction on r). If εr = −1, then use

s−1
r − 1 = s−1

r (1− sr) = −s−1
r (sr − 1) and h− 1 ∈ RG{s− 1 | s ∈ S}.

Note : we used x−1 − 1− x−1(1− x) and xy − 1 = x(y − 1) + (x− 1) and
induction on r. �

Recall : If N ⊳ G then G/N is commutative if and only if G′ < N .

Lemma 4.30 Let R be a commutative ring and I an ideal of RG. Then
RG/I is commutative if and only if ∆(G,G′) ⊂ I.

Proof. Let I ⊳RG, R commutative. (⇒). RG/I commutative =⇒ ∀ g, h ∈
G we have gh − hg ∈ I. gh = hg = hg(g−1h−1gh − 1) = hg([h, g] − 1) ∈ I.
=⇒ [h, g]− 1 ∈ I. ∴ ∆(G,G′) ⊂ I (by the previous lemma).

(⇐). Assume ∆(G,G′) ⊂ I. Then gh− hg = hg([h, g]− 1) ∈ ∆(G,G′) ⊂ I.
∴ gh = hg mod ∆(G,G′), so g and h commute modulo I so RG/I is com-
mutative. �

Proposition 4.31 Let G be finite. Let RG be semisimple (i.e. RG ∼=

⊕s
i=1Mni

(Di) ). Let eG′ =
1

|G′|
.Ĝ′. Then

RG ∼= RGeG′ ⊕RG(1− eG′) ∼= R(G/G′)⊕∆(G,G′).

Here R(G/G′) is the direct sum of all the commutative summands of the de-
composition of RG and ∆(G,G′) is the direct sum of all the non-commutative
summands of the decomposition of RG.
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Proof. Clearly RG ∼= R(G/G′) ⊕ ∆(G,G′). Now it is also clear that
R(G/G′) ∼= ⊕ sum of the commutative summands of RG. It suffices to
show that ∆(G,G′) contains no commutative summands.

Assume ∆(G,G′) ∼= A ⊕ B where A is commutative (and 6= {0}). Thus
RG ∼= R(G/G′)⊕ A⊕ B. Now RG/B ∼= R(G/G′)⊕ A (check). (In general,
R ∼= C ⊕ D =⇒ R/C ∼= D). So RG/B is commutative, so by the previous
lemma , ∆(G,G′) ⊂ B. Thus ∆(G,G′) ∼= A⊕B ⊂ B which is a cotradiction.

�

Definition 4.32 D2n =< x, y |xn = y2 = 1, yxy = x−1 > is called the
dihedral group of order 2n.

Note : D2.3 = D6
∼= S3.

Example 4.33 F3D10. Note that Maschke applies so F3D10
∼= ⊕s

i=1Mni
(Di)

∼= ⊕s
i=1Mni

(Ki) (where Ki are finite fields containing F3) F3 ⊕⊕
t
i=1Mni

(Ki)

Note : D10 =< x, y |x5 = y2 = 1, yxy = x4 >. ∴ [x, y] = x−1y−1xy =
x4yxy = x4.x4 = x8 = x3. ∴ D10

′

> < x3 > so D10
′

> < x >∼= C5.

∴ F3D10
∼= F3(D10/D10

′

)⊕ non-commutative piece ∼= F3C2⊕ non-commutative piece
∼= F3 ⊕ F3 ⊕ non-commutative piece. By counting dimensions we get either

F3D10
∼= F3 ⊕ F3 ⊕M2(F3)⊕M2(F3)

or
F3D10

∼= F3 ⊕ F3 ⊕M2(F32)

Example 4.34 F5D12. 5 ∤ 12 so maschke applies. F5D12
∼= ⊕s

i=1Mni
(Di)∼=
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F5⊕
s−1
i=1Mni

(Ki).D12 =< x, y |x6 = y2 = 1, yxy = x5 >. D12
′

= ?

[xiyj, xkyl] = y−jx−iy−lx−kxiyjxkyl i, k ∈ {0, 1, 2, 3, 4, 5} j, l ∈ {0, 1}

= yjx−iylx−kxiyjxkyl

= x(−i)(−1)jyj+lxi−kyjxkyl

= x(−i)j(−1)x(i−k)(−1)(j+l)yj+j+lxkyl

= x(−i)j(−1)+(i−k)(−1)(j+l)xk(−1)(2j+l)y2j+2l

= x(−i)j(−1)+(i−k)(−1)(j+l)+k(−1)(2j+l).1

= x[(−i)j(−1)+(i)(−1)(j+l)]+[(−k)(−1)(j+l)+k(−1)(2j+l)]

= xi{(−1)j(−1)+(−1)(j+l)}+k{(−1)(−1)(j+l)+(−1)(2j+l)}

Now consider a number of cases

(i) j and l even :

[ , ] = xi{−1+1}+k{(−1)+1} = x0 = 1

(ii) j even and l odd :

[ , ] = xi{−1+(−1)}+k{1+(−1)} = x−2i

(iii) j odd and l even :

[ , ] = xi{1+(−1)}+k{1+1} = x2k

(iii) j and l odd :
[ , ] = xi{1+1}+k{−1+(−1)} = x2i−2k

∴ D12
′

= {1, x2, x4} ∼= C3

∴ D12/D12
′ ∼= C4 or C2 × C2 (considering sizes)

Note : D12
∼= D6 ×C2 also C12 ≇ C6 ×C2 but C12

∼= C3 ×C4. D12
∼= D6 ×

C2 =< x2, y | (x2)3 = y2 = 1, y(x2)y = (x2)−1 > × < x3 > = {x2i.yj.x3k | i ∈
{0, 1, 2}, j ∈ {0, 1}, k ∈ {0, 1}}.

∴
D12

D12
′

∼=
D6 × C2

C3

∼=
D6

C3

× C2 = C2 × C2
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F5D12
∼= F5(C2 × C2)⊕ NCP

F5D12
∼= F5 ⊕ F5 ⊕ F5 ⊕ F5 ⊕ NCP

∴ NCP has dimension 8. So NCP ∼= M2(F5)⊕M2(F5) or NCP ∼= M2(F52).

So U(F5D12) ∼= C4 × C4 × C4 × C4 ×GL2(F5)×GL2(F5) or
U(F5D12) ∼= C4 × C4 × C4 × C4 ×GL2(F52).

|U(F5D12)| = (p− 1)4{(p2 − 1)(p2 − p)}2 = 44{(24)(20)}2 = 2183252

or

|U(F5D12)| = (p− 1)4{(q2 − 1)(q2 − q)} = 44{((52)2 − 1)((52)2 − 52)}

Note that D12 < U(F5D12 so 12 | |U(F5D12)|. But 12 divides the order of
both cases so this does not help to differentiate between them. Also, U =
U(F5D12) ∼= U(F5(D6 × C2)) > U(F5D6) and U > U(F5C2).

Lemma 4.35 Z(Mn(K)) = In×n.K. Thus dimK(Z(Mn(K))) = 1.

Definition 4.36 Let G be a finite group and R a commutative ring. Let
{Ci}i∈I be the set of conjugacy classes of G. Then

Ĉi =
∑

c∈Ci

c ∈ RG

is called the class sum of Ci.

Theorem 4.37 Let G be a group and R a commutative ring. Then the set
of class sums {Ĉi} of G forms a basis for Z(RG) over R. Thus Z(RG) has
dimension t over R, where t is the number of conjugacy classes of G.

Proof. Let Ĉi be a class sum. Let g ∈ G. Then Ĉi

g
= Ĉi. ∴ Ĉi ∈ Z(RG).

Let α =
∑

agg ∈ Z(RG). Let h ∈ G. Then αh = α so agh = ag (
coefficient of g = coefficient of gh). Thus the entire conjugacy class Ci

has the same coefficient in the expansion of α. ∴ α =
∑

i∈I

ciĈi (ci ∈ R).

∴ Z(RG) ⊂ {linear combinations of Ĉi over R}.
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∴ Z(RG) = {linear combinations of Ĉi over R}.

It remains to show linear independance of {Ĉi}. Suppose
∑

i∈I

ciĈi = 0. Then

we have an R-linear combination of elements of G, but the elements of G are
linear independant over R. So the coefficients are all 0.

∑

i∈I

ciĈi = 0 =⇒ ci = 0 ∀ i ∈ I

∴ {Ĉi} is linear independant over R. �

Recall the class equation of a finite group G. Let {x1, x2, . . . , xt} be a com-
plete set of conjugacy class representatives of G. Let c(xi) = conjugacy

class containing xi. Let ni = |C(xi)| = [G : CG(xi)]. Then |G| =
t∑

i=1

ni

=
t∑

i=1

|C(xi)| =
t∑

i=1

[G : CG(xi)] = |Z(G)|+
∑

ni>1

ni. (Note : ni = 1⇐⇒ xi ∈

Z(G)).

Lemma 4.38 Let G be a finite group and C the complex numbers. Then

CG ∼= ⊕t
i=1Mni

(C)

where t = the number of conjugacy classes of G.

Proof. dimCCG = ♯ of conjugacy classes of G. ∴ dimCZ(⊕t
i=1Mni

(C))

=
t∑

i=1

dimCZ(Mni
(C)) =

t∑

i=1

1 = t. �

Example 4.39 F5C2
∼= F5⊕F5. Here Z(F5C2) = F5C2 so dimF5

Z(F5C2) =
dimF5

(F5C2) = 2 = ♯ of conjugacy classes of C2. (C2 = {1, x} =⇒ {1} and {x}
are the only conjugacy classes of C2).

Example 4.40 F5S3
∼= F5 ⊕ F5 ⊕M2(F5). S3 =< x, y |xn = y2 = 1, yxy =

x−1 >. S3
′

=< x2 >∼= C3. ∴ S3 S3
′ ∼= C2
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∴ F5S3
∼= F5C2 ⊕ NCP
∼= F5 ⊕ F5 ⊕ NCP
∼= F5 ⊕ F5 ⊕M2(F5).

∴ Z(F5S3) ∼= Z(F5 ⊕ F5 ⊕M2(F5))
∼= F5 ⊕ F5 ⊕ Z(M2(F5))
∼= F5 ⊕ F5 ⊕ I2×2.F5

∼= F5 ⊕ F5 ⊕ F5.

This is a 3-dimensional vector space over F5 (with basis {(1, 0, 0), (0, 1, 0), (0, 0, 1)}).
∴ S3 has 3 conjugacy classes. We proved this group theory result using group
rings.

Now using group theory, find the 3 conjugacy classes of S3.

Theorem 4.41 Let R be a commutative ring and let G and H be groups.
Then

R(G×H) ∼= (RG)H.

Proof. Homework 2. �

Corollary 4.42

R(G×H) ∼= (RG)H ∼= (RH)G

Proof. R(G×H) ∼= R(H×G) and now use the theorem. Note G×H ∼= H×G
by (g, h) 7→ (h, g). �

Corollary 4.43

R(G1 ×G2 × · · · ×Gn) ∼= (((RG1)G2) . . .)Gn
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Theorem 4.44 Let {Ri}i∈I be a set of rings and let R = ⊕i∈IRi. Let G be
a group. Then

RG ∼= (⊕i∈IRi)G ∼= ⊕i∈I(RiG).

Proof. Homework 2. �

Example 4.45 F5C6. F5C6
∼= F5(C2 × C3) ∼= (F5C2)C3

∼= (F5 ⊕ F5)C3
∼=

F5C3 ⊕ F5C3.
Now F5C3

∼= F5⊕F5⊕F5 or F5C3
∼= F5⊕F52. ∴ U(F5C3) ∼= C4×C4×C4

or C4 × C24. But C3 < U(F5C3), so by lagrange’s theorem , 3 | U(F5C3).
However 3 ∤ |C4 × C4 × C4| and 3 | |C4 × C24| so U(F5C3) ∼= C4 × C24 and
F5C3

∼= F5 ⊕ F52.

∴ F5C6
∼= U(F5C3)⊕ U(F5C3)
∼= F5 ⊕ F52 ⊕ F5 ⊕ F52

∼= F5 ⊕ F5 ⊕ F52 ⊕ F52

Theorem 4.46 (Fundamental Theorem of Finite Abelian Groups)
Let A be a finite abelian group. Then

A ∼= G1 ×G2 × · · · ×Gn

, where Gi is a cyclic group of order pi
mi, where pi is some prime.

Example 4.47 Let A be an abelian group of order 30 = 21.31.51. Then

A ∼= C30

∼= C5 × C6

∼= C5 × C3 × C2

∼= C15 × C2

∼= C10 × C3

These are all the same because 2,3 and 5 are all relatively prime.

∴ A ∼= C2 × C3 × C5.
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Example 4.48 C24
∼= C23.3

∼= C23 × C3 ≇ C6 × C4
∼= C2 × C3 × C4

∼=
C2 × C22 × C3.

Example 4.49

F7C30
∼= F7(C2 × C3 × C5)
∼= (F7C2)(C3 × C5)
∼= (F7 ⊕ F7)(C3 × C5)
∼= (F7 ⊕ F7)C3)C5)
∼= (F7C3 ⊕ F7C3)C5)
∼= (F7C3)C5 ⊕ (F7C3)C5

∼= ?

It is not obvious what F7C3 is ! (Lagrange’s theorem doesn’t help).

Hey Leo i thought I’d help you out here !!!

F7C3
∼= F7⊕F7⊕F7 (since |U(F7C3)| = 216 = 63 and U(F7C3) ∼= C6×C6×C6).

So F7C30
∼= (F7⊕F7⊕F7)C5⊕ (F7⊕F7⊕F7)C5

∼= {⊕3
i=1F7}C5⊕{⊕

3
i=1F7}C5

∼= {⊕6
i=1F7}C5

∼= ⊕6
i=1{F7C5}. Also F7C5

∼= F7 ⊕ F74 (since |U(F7C5)| =
14400 = (7−1)(74−1) and U(F7C5) ∼= C6×C2400) so F7C30

∼= ⊕6
i=1{F7⊕F74}.

∴ F7C30
∼= ⊕6

i=1F7 ⊕
6
i=1 F74

Example 4.50 F5D12
∼= F5⊕ F5⊕ F5⊕ F5⊕M2(F5)⊕M2(F5) or F5D12

∼=
F5 ⊕ F5 ⊕ F5 ⊕ F5 ⊕M2(F52).

We mentioned before that D12
∼= D6 × C2. ∴ F5D12

∼= F5(C2 × D6) ∼=
(F5C2)D6

∼= (F5 ⊕ F5)D6
∼= F5D6 ⊕ F5D6.

∴ F5D12
∼= (F5⊕F5⊕M2(F5))⊕ (F5⊕F5⊕M2(F5)) ∼= ⊕

4
i=1F5⊕⊕

2
j=1M2(F5).

Note : CS3
∼= C⊕C⊕M2(C) but QS3

∼= Q⊕Q⊕H where H is the division
ring of quaternions over Q.

The End
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Extra’s

A.1 Homework 1 + Solutions

Homework 1

Q1 For the following group rings, (i) find the group of units and show what
abstract group it is isomorphic to, (ii) find the augmentation ideal and (iii)
fing the set of zero-divisors.

(a) Z2C2.

(b) Z11C1.

(c) Z2C3.

(d) Z3C3.

(e) Z2C4.

(f) Z2C2 × C2.

(g) Z2S3.

What conjectures can you come up with after doing these examples ?

52
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(g) U(Z2S3) contains 12 elements. Find these 12 elements and find the
abstract group of order 12 which U(Z2S3) is isomorphic to. (Hint : use

x + Ŝ3 + y + Ŝ3 where Ŝ3 = 1 + x + x2 + y + xy + x2y). (ignore the
zero-divisors for (g)).

Note : Bonus question (optional).

(h) Find the zero-divisors of Z2S3.

Solutions
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A.2 Homework 2 + Solutions

Homework 2

Q1 Find the abstract group structure of U(F2D12). Hints :

1 Note that Maschke’s theorem does not apply.

2 D12
∼= C2 ×D6.

3 U(F2D6) ∼= D12

Q2 Find the size of the group U(F2D12). Hint : |U(F3D6)| = 324.

Q3 (a) Show that D8
′ ∼= C2.

(b) Show that D8/D8
′ ∼= C2 × C2.

(c) Conclude that FpD8
∼= (⊕4

i=1Fp)⊕M2(Fp). (where p 6= 2).

Q4 (a) Find all the conjugacy classes of D8 (there are 5).

(b) What is dimFp
Z(FpD8).

(c) Conclude that FpD8
∼= (⊕4

i=1Fp)⊕M2(Fp). (where p 6= 2).

Q5 Let R be a commutative ring and let G and H be groups. Prove that

R(G×H) ∼= (RG)H.

Q6 Let {Ri}i∈I be a set of rings and let G be a group. Let R = ⊕i∈I . Show
that RG ∼= ⊕i∈IRiG.

Q7 The quaternion group of 8 elements has the following presentation:

H =< a, b | a4 = 1, a2 = b2, bab−1 = a−1 >

(a) Show that H
′

=< a2 >

(b) Show that H/H
′ ∼= C2 × C2.
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(c) Conclude that FpD8
∼= (⊕4

i=1Fp)⊕M2(Fp). (where p 6= 2).

Q8 We showed in class that either

F3D10
∼= F3 ⊕ F3 ⊕M2(F3)⊕M2(F3)

or
F3D10

∼= F3 ⊕ F3 ⊕M2(F32)

Use lagranges theorem to determine which one of the two isomorphisms above
applies.

Q9 Using the presentation of H given in Q7, show that < â > is a central
idempotent of F3H. List all the elements of annr∆(H, < a >) in the group
ring F3H.

Q10 Find |GL3(Fpn)|.

Solutions
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A.3 Autumn Exam + Solutions


