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Chapter 1

Introduction

1.1 Definitions and examples of Rings and
Group Rings

Definition 1.1 A ring is a set R with two binary operations + and - such
that

+(b+c)=(a+b)+c
d—a€Rsta+(—a)=0=(—a)+a

(v) a.(b.c)=(ab).c

(vii) (a+b).c=ac+bc VabceR
Definition 1.2 Ifa.b=0b.aV a,b € R, then R is a commutative ring.
Example 1.3 (Z,+,-) is a commutative ring.

Example 1.4 The set P of polynomials of any degree over R is a ring (
with the obvious multiplication and addition). This is also a commutative

ring e.g. (22° +1)(3z +2) = (3z 4+ 2)(22* + 1) € P.
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Definition 1.5 If 41 € R such that 1.a = a.1V a € R, then R is a ring
with tdentity. Otherwise R is a ring without identity.

For us, R (usually) is a ring with identity.

Example 1.6 The set M, (R) of all n x n matrices with real coefficients is
a ring (with matriz addition and matriz multiplication).

(i) A+(B+C)=(A+B)+C Vv
(17) Let0:(8 8),then0+A:A+0:A v

a b —a —b

(zir) If A = ( . d),then —A= ( . _d)and—A—i-A—A—i-—A_
(w) A+ B=B+A V

(v) A(B.C)=(A.B).C V

(vi) A(B+C)=AB+BC V

(vii) (A+B).C=AC+B.C VADB,CeM,R) v
Note : M,(R) is a non-commutative ring ( since AB # BA Y A,B €
M, (R)).

Example 1.7 C = {a+ib | a,b € R} is a ring (the complex numbers). It
is also a 2-dimensional vector space over R with basis {1,1}.

Example 1.8 Consider a 4-dimensional vector space over R with basis {1,1, j, k}.
We define multiplication as follows
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2= =k = —1=ijk

~
I

ki=j3 ik=—j k j

li=il=i1lj=jl1=j 1lk=kl=kandl.1=1

Now define:

(a+bi+cj+dk)(e+ fi+ gj + hk) = (ae — bf — cg — dh) + (af + be + ch — dg)i
(ag + ce — bh +df)j + (ah + de + bg — cf )k

This multiplication gives us a non-commutative ring (ij # ji), called the
Quaternions (H).

Example 1.9 (1840’s Hamilton) Consider an n-dimensional vector space
(over R say) with basis {e1,ea,...,e,} (the basic units). Define the product
e;.e; Vi,j = 1...n. Then (as in the previous example) insist on the dis-
tributive laws and we see that this new object is a ring, called the set of
Hypercomplex Numbers (M).

Example 1.10 If {e,eq,...,e,} forms a group (under multiplication) G,
then the hypercomplex numbers generated by G is called the Group Ring
(RG). Arthur Cayley 1854.

Definition 1.11 Given a group G and a ring R, define the Group Ring
RG to be the set of all linear combinations

a:Zagg

geG

where a, € R and where only finitely many of the a,® are non-zero.
Define the sum

a+p= (Zagg> + (Z bgg> = (ag+by)g.

geG geG geG
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Define the product

af = (Zagg> (th ) = Y agbgh

geG heG g,heG

Notes :

(1) We can also write the product o5 as Z Cyu, where C, = Z agby,

ueld gh=u

(2) RG is aring (with addition and multiplication defined as above).

(3) Given o € RG and A € R, we can define a multiplication

Aa = /\Z agq = Z()\ag)g.

geG geG

(4) RG is an example of a hypercomplex number system ( if R = R).

Definition 1.12 Let R be a ring. An abelian group (M,+) is called a
(left) R-module if for each a,b € R and m € M, we have a product
am € M such that

(1) (a+b)m =am+bm
(i1) a(my +msy) = amy + amy

)
)

(i) a(bm) = (ab)m
)

(iv) Im=m Ya,b€ R and ¥ m,my,my € M.
Similarly we could define a (right) R-module

(i) m(a+b) = ma+mb

m(ab) = (ma)b

)
(it) (my + ma)a = mia + amaa
(iid)

)

(iv) ml=m Ya,b€ R and ¥ m,my,my € M.
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If M is a left R-module and a right R-module, then we call M o (two-sided)
R-module.

Definition 1.13 Let R be a ring. An element a € R is invertible in R if
b € R such that a.b =b.a = 1.

We write b = a~! (the inverse of a) and say that a is a unit of R.
Definition 1.14
UR)={a€ R|ifaisaunitof R}

Note that U(R) is a group (with multiplication) called the group of units
of R.

Example 1.15 U(Z) = {+1,—1}, the cyclic group of order 2 (written Cs).

Example 1.16 U (Q) =Q\ {0}.

<%>1zgwherea7é0, b#0

Example 1.17 U(R) = R\ {0}.
Example 1.18 U/(C) = C \ {0}.
Example 1.19 U/(H) = H\ {0}.
Example 1.20 U(M,(R)) = {A € M,(R) | detA # 0} = GL,(R).

Definition 1.21 A ring R is called a division ring if every non-zero ele-
ment of R is a unit. i.e. U(R) = R\ {0}.

Note : Q, R, C and H are division rings. Z and M,(R) are not division
rings.
Definition 1.22 A division ring R is called a (commutative) field if R

15 a commutative Ting.

Note : Q, R and C are fields. H is not a field (non-commutative). Z is not
a field (not a division ring).
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Definition 1.23 (Z,,+,-) is the ring of integers modulo n (where n € Z,
n>0). In fact this is a commutative ring.

Example 1.24 Consider (Zs,+,) : 171 =1,2"1=3,3"1=2and 47! =
4. So Zs is a division ring, so it is a field.

Example 1.25 Consider (Zg,+,-) : 171 =1, 27 doesn’t exist, 37! doesn’t
exist, 41 doesn’t exist and 57! = 5. So U(Zg) = {1,5} =< 5 >= Cy . So
Zg is not a division ring and hence it is not a field.

Definition 1.26 In a ring R, if a.b =0 but a # 0 and b # 0 then a and b
are called zero divisors.

Definition 1.27 If a ring R has no zero-divisors, then R is called an in-
tegral domain (or just a domain).

Example 1.28 (Z,+,-) is an integral domain since a.b =0 = a =0 or
b=0.

Example 1.29 In Zg, 2.5=0. So 2 and 3 are zero divisors. Therefore Zg
1s not an integral domain.

Example 1.30 (Zs,+,-) is an integral domain.

Lemma 1.31 FEwvery division ring is an integral domain.

Proof. We assume that R is a division ring. We want to show that R has
no zero divisors. Proceed by contradiction : Assume a.b = 0, where a # 0
and b # 0. Since 0 # a € R then we have a™' € R. . a '(ab) = a (0) =
0= (a"'a)b=1.b=0b=0. This is a contradiction. [

Notes :
(1) The converse is not true. i.e. there are integral domains which are not

division rings. e.g. (Z,+,-) is not an integral domain but not a division
ring.

(2) Zero-divisors are never invertible.

Example 1.32 Let R = Fy = Zy and G = Cy (Zs is the ring of order
2, which is a field). Writing down the elements : Fo = {0,1} and Cy =
{12} =<z >=<z|z?*=1>.
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FoCy = {Z agg|ag € Fa}

geCs
= {0][4‘2.102 + OFQ.[E, ]‘F2'102 + 0[5‘2.1‘, 0F2.102 + 1[5‘2.11, 115‘2.102 + 1[@2.1’}
= {O]F2027 1F2027 1F2'x7 1152'102 + 1F2'x}
= {0,1,z,1+ =z}

Note that . is [F; module multiplication. Now let’s construct the cayley tables

for ]FQCQ.

FyCy
(‘) 1+1= 1]F2'102 + 1]}72.102
+ 0 1 T 14+
= (1F2 + 1F2)1CQ
0 0 1 T 14+
= (0F2)102 =0
1 1 0@)1+x x
(x) z+x=1p,.x+ 1p,.x
x x 1+ 0(*) 1
= (1F2 + 1]172)‘73
l+z ||[1+2 x 1 0

(FyCy, +) is a group.

FyC,y
(o) 14+2)(14+2)=11+2)+z(1+2x)
0 1 T 1+ =z
=1l+x+xz+1
0 0 0 0 0
=2+4+2x=0
1 0 1 z 14+
x 0 T 1 14+
14+ 0 l1+2 | 14+=x O“)
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Clearly (FyCy,-) is not a group (since 0.a = 0V a € FoCy). Also (FoCs \
{0},-) does not form a group (since (1 + x)*> = 0 and 0 is not an element of

FyCy \ {0}.

Note : that the unit group of FoCy is {1, z}.

U(FyCs)
1 X
U(FQCQ) = {]_,.Z‘} =~ 1 1 x
X X 1

Conjecture 1.33 U(RG) =G.

Note that G is isomorphic (as a group) to a subgroup of U(RG) via the
embedding

0:G—URG) g—lyg
We often associate G with 0(G) < U(RG) and abusing the notation, we write
G <U(RG).

Recall that in FoCh, (1 +2)? = 0. So 1+ x is the only zero divisor of FyCl.

Conjecture 1.34 RG = {0} UU(RG)U ZD(RG) (where ZD(RG) are the
zero divisors of G.

Consider (1) F3Cy and (2) FoCs.

(1) F3Cy

F3Cy = {a.1+b.x|a,b € Fs}. There are 3 choices for a € {0, 1,2} and there
are 3 choices for b € {0,1,2} so there are 3.3 = 9 elements in F3C5.

(2) FoCy
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Cs = {1,x,2%}. FoCs = {a.1 +b.x + c.x?|a,b,c € F3}. There are 2 choices
for a € {0,1}, 2 choices for b € {0,1} and there are 2 choices for ¢ € {0, 1}
so there are 2.2.2 = 8 elements in FyC'.

Now 3 < |FyC3 < 8 and C3 <U(F2Cs5). By Lagranges theorem |c3| divides
[U(F5C3)| so 3| [U(FC3)| and |U(FyC5)| < 8, therefore |U(FyC5)| = 3 or 6.

Lemma 1.35 Let R be a ring of order m and G a group of order n. Then
RG is a finite group ring of size |R|I¢l = m".
Proof. RG = {>_ ¢

So there are m.m ... m-elements in RG. i.e. m" = |R|I¢l. |
———

ag9|a, € R}. For each g, there are m choices for a,.

|Gl=n

Example 1.36 |[FoCy| = |Fy|/2l = 22 = 4. The group (FoCy, +) has order 4
so it is 1somorphic to either Cy or Cyx Cs. If a € FoCy, then 2.a = 0.a = 0.
So every element of FoCy has order < 2. Thus FyCy 22 Cy (since Cy has an
element of order 4). . (F3Cy,+) = Cy x Cy (Klein-4-group).

Question : s FoCy = Z, (isomorphic as rings) 7 Answer : No. What is
the additive group of Z4

Zy
+ 0 1 2 3
0 0 1 2 3
So (Z27 +) = CY4
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

Thus FoCy and 7Z, have non-isomorphic additive groups. So they are not



CHAPTER 1. INTRODUCTION 11

isomorphic as rings.

1.2 Ring Homomorphisms and Ideals
Lemma 1.37 Let f : R — S be a ring homomorphism, then
(i) f(0,) = 0.
(ii) f(—a) = —f(a).

Proof. (i) Take a € R. f(a) = f(a+0,) = f(a) + f(0,). Thus f(a) =
fla)+ £(0) = f(0) + f(a) Va € R. So

—fa) + fla) = 0

Definition 1.38 Let L be a subset of the ring R. L is called o left ideal
of R if

(i) x,ye L= x—y € L.

(ii)) x € L, a € R = ax € L (left multiplication by an element of R).

S RL=1L
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Similarly we could define a right ideal of R. If L is a left ideal of R and a
right ideal of R, we say that L is a two-sided ideal of R.

K (used in the same way that normal subgroups are used in group theory).
G
ie. [ NG =G — ~ 9 g.N is a group homomorphism with kernal
G
N and image N’ the factor group or quotient group of G' by N.
G
— ={gN : g€ G}.
v =N geGl

Recall : 150, ond 4pq 3rd isomorphism theorems of groups.

Let I be an ideal of R. We write I < R. Notice that I is a ring (usually
without the multiplicative identity 1,). = I is a subring of R.

Example 1.39 Consider the ring (Z,+,-). Let n € Z. Then I = nZ =
{n.a : a € Z} is a (two sided) ideal of Z, since

na —nb=mn(a—0b) e nZVa,beZ
c(n.a) =n(c.a) EnZNceZ

Example 1.40 Consider the ring (Zg,+,-). What are the ideals of (Zg, +, )
? Now consider the subset Iy = {2.a : a € Zg} = {0,2,4}. L5 is an ideal of
Zg} (exercise). I3 = {3.a : a € Zg} = {0,3} is an ideal of Zg} (exercise).
0=1{0z,} <Zg}. Also Zg <Zg. Note that Zg} is the only ideal of Zg} which
contains 1z,. Note : Iy = {l.a : a € Zg} = Zg. Are there any more ideals of
Zg ¢ Let I be an ideal of Zg. What is the size of I ¢

Lemma 1.41 ( Langrange theorem for rings ) Let I be an ideal of a finite
ring R. Then |I|/|R)|.

Proof. (R,+) is a group, (I,+) is a subgroup. Apply Lagranges theorem
(for groups), we get |I]/|R]. |

Applying this lemma to the previous example, we see that |I| = 1, 2, 3 or 6.
If |[I| =1, then I = {0z,}. If |[I| =6, then I = Zg. If |I| = 2, then I = {0, 3}.
If |I| = 3, then I = {0,2,4}. Thus Zg has 4 ideals.
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Example 1.42 Consider the ring (Zs,+,-). Let Iy = {2.a : a € Zs} =

{0,2,4,1,3} = Zs. Therefore the only ideals of Zs are {0z} and Zs. i.e. Let
I <Zs, then |I|/|Zs5| so |I| =1 or5 so I ={0z,} orZs

Let f: R — S be a ring homomorphism, then f(1,) = 1, is not necessarily
true.

a b
Example 1.43 Define f : My(Q) — M;3(Q) where ( CCL Z ) — | ¢ d
0 0

Thenf(8 8)

1 0
f(]2)=f<(1)?)= 83 £ I,

o O O

o O O

00

0 0 | and f is a ring homomorphism. However
00

0

0

0

Note that here f(A)f(Iy) = f(a.ly) = f(A). So f(I2) seems to work like the
multiplicative identity on the range of f.

Let f: R — S be a ring homomorphism. Then Ker(f) ={z € R : f(x) =
0}. If z,y € Ker(f), then f(xr +y) = f(z) + f(y) = 040 = 0. Also
flz—y)=f(z) = fly) =0-0=0.

Let x € Ker(f), s € R. Isxs € Ker(f) ? f(zs) = f(z)f(s) = 0.f(s) = 0.
c.xs € Ker(f). So Ker(f) is an ideal of R.

Definition 1.44 A ring homomorphism f: R — S is called
(i) a monomorphism (or embedding) if [ is injective.

(ii) an epimorphism if f is surjective.
Example 1.45 Z A, Q where f(n) =n. Ker(f)={0} C Z.

Example 1.46 7 — 27 where g(n) =2n. Ker(g) = {0} C Z.

Example 1.47 Let p be a prime number. Define f : Z — Z, by
f(n) =n+pZ.
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fn4+m)=n+m+pZ. f(n)+ f(m)=n-+pZ+m+pZ =n+m+ pZ.
S f(n+m) = f(n)+ f(m). Also f(n—m) = f(n) — f(m).

f(nm) =nm + pZ.

fn)f(m) = (n+pZ)(m + pZ)
= nm + npZ + mpZ + p* 77
= nm + p(nZ + mpZ + pZ)
nm + pZ

Thus f(nm) = f(n)f(m) and f is a ring homomorphism.
Ker(f)={neZ| f(n) =0} = {n € Z|n+pZ = 0z, = 0+pZ} = {np|n € Z}

Since f(np) =np+pZ =pn+2Z)=pZ=0+pZ=0. So f:Z — 7Z, has
kernal pZ.

Let I < R. Then consider the set R/l = {I +r:r € R}. Define
e addition by (r+1)+ (s+1) = (r+s)+ 1.
e multiplication by (r+ I)(s+ 1) = (rs) + I.

R/I is aring (check i.e. Ogyr =0+1, (r+1)+(—r+1) =0+1 = Og/s, and
so on ).

Consider the ring homomorphism f : R — R/I defined by f(r) = r + I.
Whatis Ker(f)? Ker(f)={re R: f(r)=0}={reR: f(r)=0+1}=1
(Since if i € I, we have f(i) =i+ 1 =1).

Therefore given any ideal I of a ring R, we can come up with a ring homo-
morphism f : R — R/I such that I = Ker(f). Note that we often write
fry=r+1=7(rmodI).

Example 1.48 pZ <1 Z, pZ is the kernal of the homomorphism f : 7 —
Ly =77,
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1.3 Isomorphism Theorems

Theorem 1.49 (]St Isomorphism theorem for groups ) Let f — S. Then
G/N = S where N = Ker(f).

For rings , the kernal is an ideal. Let G be a group, H < G and N < G.
Then

G G/N =~ H/1
N\
H N also
NS
1g G/H = N/1

Example 1.50 S3 =< x,y|2® = y* = 1,yry = 2* >. Let’s construct a
lattice diagram of subgroups

S3
Double lines means normality// \\
> <y>

< <zy>  <x?y>

Ve

Now consider w : R — R/I where w(r) = r + I (the cononical projection).
Let J D I, thenw(J)={j+1:j¢€ J}=J/I C R/I. J/I is not only a
subset, it is also an ideal of R/I i.e. J/I < R/I.
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Ker(w) = I—w>l/] = {0}

{0}
Note that a ring homomorphism preserves subsets and ideal.

Theorem 1.51 ( 2"¢ Isomorphism Theorem )




CHAPTER 1. INTRODUCTION

Theorem 1.52 ( 3"* Isomorphism Theorem )

i |

R

Ji

{0}

w

w

g I

R/I

T /1

1/1

} {R/1} [ {J/1}
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Ideals And Homomorphisms of

RG

Let R be a ring (usually commuatative) and G a group. Then RG is a group
ring (defined before). Since RG is a ring, we can talk about ideals of G, ring
homomorphisms of RG and factor groups of RG.

Definition 2.1 Consider the functione : RG — R defined by (Z agg>
geG
This function is called the augmentation map. € maps RG onto R.

Let » € R then e(r.1) = r (onto). Let rg € RG and rh € RG, the
e(rg) = e(rh) = r. However rg # rh, thus ¢ is not one-to-one. ¢ is a

ring homomorphism from RG onto R (an epimorphism). Let a = Zagg

geG
and 0 = Zbgg where «, € RG. Then
geG
ela+p)=¢ (Z(ag + bg)g> = Z(ag +b,) = Zag + Zbg =e(a) +¢e(B)
geG geG geqd geqd

18

~Y 4,

geG



CHAPTER 2. IDEALS AND HOMOMORPHISMS OF RG 19

Now let o = (Z agg> and (3 = (Z bhh>.

geG heG

e(af) = (Z agbhgh> = Z agby,

g,heG g,heq

e(a)e(f) =« (Z agg) € (Z bhh) = (Z ag> (Z bh) = > agh

geCG heG gelG heG g9,heG

e(a+ f) =e(a)e(f) and € is a ring homomorphism.

Ker(e) = {a =) cqa9|e(a) =3 5a, = 0} Ker(e) is non empty and
non trivial.

Example 2.2 rg+ (—rh) € Ker(e) since e(rg+ (—rh)) =r—r =0.

RG
Ker(e)
and is denoted by Ker(e) = A(RG).

Now =~ R. Ker(e) is an ideal called the augmentation ideal of RG

Let u € U(RG). Say u.v = v.u = 1. Then e(uv) = ¢(1) = 1 = e(u)e(v) =
1 € R. So e(u) is invertible in R, with inverse (v). So e(U(RG)) C U(R)
i.e. € sends units of RG to units of R.

Let w € ZD(RG). Say uw.w = v.u = 0 where u,v # 0. Then e(uv) =
g(u)e(v) = €(0) = 0. Thus e(u)e(v) = 0. So either e(u) = 0 or e(v) = 0 or
e(u) and e(v) are zero divisors in R.

If R has no zero divisors then this forces e(u) = 0 or £(v) = 0.

Example 2.3 List all the elements of F3Cy, U(F3Cy) and ZD(F3Cs).

Cy = {l,z} and F3 = {0,1,2}F3Cy = {a1.1 + ag.x|a; € F3}. Thus
IF3C,| = 3.3 = 32 = 9 (|F3|I°2).
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Writing the elements in lexicographical order :

0+0x, 0412, 0+ 2.2
140z, 14+12, 1+22
240z, 241z, 2+ 22

F3Cy ={0,1,2, 2,2z, 1+ 2,1 4+ 22,2 + 2,2 + 2z}

(SN ]F302 —>]F3

8(0() a € F3Cy

0 {0,2+ 2,1+ 2z}

1 {1,2,2 4 2z}

2 {2,22,1 + x}

UF3Cy) = {1,2,2,22}, since 17 =1, , 22 = 1,22 =1 and 22)> =1. In
a group inverses are unique, so we don’t need to multiply these anymore.
U(F3Cy) = Cy x Cy since it has no elements of order 4, so U(F3Cy) 2 Cy.

l+z)l+z)=14z+a+22=2+22#1. (1+2)2+2)=2+z+
2z + 2% = 0 # 1. Note that these are zero divisors so they are not units.
Also (14 2x)(1+2z) =1+2x+ 2z +42°> =2+ 2z and (1 +22)(2 + 22) =
2+ 2z + 4z + 42> = 0.

2 ZD(FsCo){l + 2,24+ x,1+ 22,2+ 2z}
Note F3C5) = U(F3Cy) U ZD(F5C5) U {0}.
Conjecture 2.4 In general in any group ring RG, do we have
F3Cy) = U(F3Cy) U ZD(F5C) U {0}

Lemma 2.5 Let I be an ideal of a ring R, with [ # R. Then I contains no
invertible elements.
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Proof. Suppose u € I, with u invertible (say w.v = v.u = 1). Now since [
is an ideal, we have v.i € [ Vi € I. In particular, v.u =1 € I. If r is any
element of R, then r.1 € I. So R C I. So R = I contradiction. |

Lemma 2.6 Let D be a diwvision ring. Then
(i) D has no ideals (apart from {0} and itself).
(i) D has no zero divisors (done before !).

Proof. (i) Let / < D, with I # {0}. Let z #0 and z € I. So 0 # z € D,
so x is invertible, by the previous lemma [ = D.

(ii) Let w.v = 0 with u # 0 and v # 0 (and u,v € D). Now v~ ! and v~}
exists so v (uv) = u='.0 = v = 0, which is a contradiction. |

Definition 2.7 An elementary matriz E, ; is the matriz of all whose entries
are ) except for the (i, 7)™ entry which is 1.

Example 2.8
010 . 0
00 0 . 0
Ei,=] 000 . 0
000 ... 0

Lemma 2.9 Let D be a division ring and R = M, (D) (n xn matrices over
division ring D). Then M, (D) has no ideals (apart from {0} and M, (D)).
Proof. If n = 1, then this just part (i) of the above lemma. Let B; =

E; hAE);. Now all entries of B; equal ) except for the (i, i)th, which is ay, .
Thus B; = appEi; Vi € {1,2,...,n}. Now I was a (two sided) ideal, A € [
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and B; = E; ,AE),; so B; € I. (Now add up all the ideals). Let

B = B, +By+---+B,
= app{E11+ Esa+ -+ E,n}

1 00 ...0
010 ...0
000 ... 1

Thus B is invertible and B € I. Thus (by the secind last lemma)

I = M, (D)

Definition 2.10 Let Ry and Ry be rings. Define a new ring, the direct
sum of Ry and Ry as
RlEBRQZ{(Tl,T2>|T1 eRl, TQGRQ} (: R1 XRQ )
——
cartesian product

Let (r1,72) and (s1, s2) € R1® Ra. Define (r1,72) 4+ (s1, $2) = (r1+ 81,72+ $2)
and (ry,r9)(s1,$2) = (r181,7282). This defines a ring (check!).

Ry & R is not a division ring since for any non-zero r € R; and sinR,y, we
have (r,0)(0,s) = (r.0,0.s) = (0,0) =0 € Ry & Ry. So (r,0) and (0, s) are
zero divisors. So (r,0) and (0, s) are not invertible. So Hamilton would not
be pleased. We could define (R; @ Ry) ® R3 = Ry ©& Ry @ R and ... and
RiDPRyd... D Rs.

Definition 2.11 A ring R is called a simple ring if it’s only ideals are
{0} and R (i.e. no non-trivial ideals).

Note : M, (D) is a simple ring.

Definition 2.12 An element e € R is called an idempotent if e? = e.
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Example 2.13 In Zg, 3 is an idempotent since 3> = 9 = 3.

Example 2.14 In My(F,), ( (1) 8 ) and ( 8 (1) > are idempotents since

10 B 10 10

00 B 00 00

00 B 00 00

0 1 a 01 0 1
Definition 2.15 The center of R is

Z(R)={z€ R|zr=rzVreR}

Question : Is Z(R) a ring ?
Question : Is Z(R) an ideal 7

Definition 2.16 ¢ is called a central idempotent if e> = e and e € Z(R).

Definition 2.17 A ring R is semisimple if it can be decomposed as a
direct sum of finitely many minimal left ideals. i.e. R = Ly @®---® L;, where
L; 1s a minimal left ideal.

l
Note : L is a minimal left ideal of R if L is a left ideal of R (L < R) and if
J is any other left ideal of R contained in L, then either J = {0} or J = L.

D 00 ... 0
0 00 0
Example 2.18 M, (D) is a semisimple ring. Let L, = | 0 0 0 0
0 00 ... 0
0 D 0 0 00 0 . D
0 0 0 0 00 0 . 0
andlet Ly=| 0 0 0 ... 0 | gnd... letL,=| 0 0 0 ... 0
0 0 0 0 00 0 . 0

For each i, L; is a minimal left ideal of R (check!). Also
M,(D)=Ly&---® L, so M,(D) is semisimple (check!).
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Lemma 2.19 Let R be s ring. R is semisimple iff every left ideal of R is a
direct summand of R.

Example 2.20 In the above example L1 @ Ly is a left ideal of R and (L; &
Ly)® (Ls---® Ly,) =R.

Theorem 2.21 Let R be a ring. R is semisimple iff every left ideal of R is
of the form L = Re, where e € R is an idempotent.

!
Proof. (=) Assume that R is semisimple. Let L < R. By the previous

!
lemma, L is a direct summand of R. So there exists a left ideal L' < R such
that L& L' = R. So 1=z +y for some x € L and y € L'. ( Question : Is
this decomposition unique ?).

Thenr = 2.1 = = 27 =z —2°. Th LNL' = {0}.

enx =ux r(rx+y) =x*+aySo zy =z —=x us zy € LN {0}
eLr’ €L

Thus 2y = 0 = x — 22, so x = 2. Hence, x is an idempotent. We have shown

L = Rx where z € L so Rz C L. We must show L C Rx. Let a € L. Then

=a.l = = =a. .a—axr = e LNnL ={0}. S

a=a alr +y) = ax +ay = a a— azx ay {0}. So

2

L )
a—ar=0s0a=axr € Rx. Thus L C Rx. So L = Rx.

(<) assume that every left ideal of R is of the form L = Re for some
idempotent e € R. We will show that every left ideal is a direct summand

of R. Let L <l] R. Then L = Re. Let L' = R(1 —e). Then L' is a left ideal
of R. (Note (1—e)?)=1—e—e+e*=1—-2e+e=1—c¢). We must show
that L& L;= R (i.e. L+ L' = Rand LN L = {0}).

Let z € RThenz =21 =xz(e+ (1 —¢)) =xe+a(l —e) € L+ L.
R=LoLl. LetxzelLNL =RenR( —e). Then z =r.e=s(l —e),
r,s € R. Thus x.e = (r.e).e = r.e* = re = z. Also z.e = (s(1 —e))e =
s(e—e?)=35(0)=0. Thusz=0s0 LNL ={0} andso R=L® L. [

Let a = Z agg € RG. Now all but finitely many of the ag’s are non-zero.

geG
We define the support of « as

suppa = {g € G'|ay # 0}

The group < supp « > (generated by the support of «) is a finitely generated
group. So R < suppa > C RG.
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Proposition 2.22 The set {g —1|g € G, g # 1} is a basis for A(G) over
R.

ie. A(G) = {Z ag(g—1)|g € G, g # 1} and the g — 1 are linearly inde-
geG
pendant over R.

Proof. Let a = Zagg € A(G). So Zag = 0. Thus a = Zagg— 0=

geqG geG geG

Zagg - Zag = Zag(g — 1) so this is a spanning set for A(G). We will

geG geG geqG
show linear independance :

Letzag(g—l) = 0. ThenOzZagg—Zag:Zagg:0<:>ag:

9€G geqG geG geG
0V g € G. Since G is linear independant over R, by the definition of the

group ring RG.
|

Note : RG has dimension |G| over R. A(G) has dimension |G| — 1 over R.

If R is a field then these are vector spaces. Otherwise they are R-modules.

Proposition 2.23 Let R be a commutative ring. The map

x: RG — RG where Zagg — Zagg_l

9eG gea
1s an tnwvolution. Then x has the following properties :
(1) (a+B) =a" + 5"
(ii) (af)" = a3
(i11) (o) = «

Proof. Homework 2. [ |

Proposition 2.24 Let [ < R and let G be a group. Then

[G:{Zagg|agél}<lRG

geG
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RG _ (R
ﬁ—(T)G-

Proof. (a) IG is a commutative group under + v'. Let oo = Zagg €lG
geG

Also

and 3 = thh € RG (so a, € I and b, € R forall g, h € G).
heG

a3 = (Z agg> (Z bhh) =Y agbughelG

geG heG g,heG el

So I is an ideal of RG.

RG

R R
(b)ﬁ:{5+1G|ﬁERG}and (T)G:{;(ag—i-l)gmg—f—]EY}. Le.

ag € R and g € G. Define
RG R

by (8 + IG) =0 (Z byg + ]G) = Z(bg + I)G. We must show that 6 is

geG gelG
an isomorphism.

O(a+IG+PB+1IG) =0(a+L+IG) =003 (a,+b,+IG) = > (a,+b,+1)g.

Also (o + IG) +0(B+1G) = > (by+1)g+ > (ag+1)g= > (ag+by;+I)g

v

0((a+IG)(B+1G)) = 0(af +1G) = 0> a,g Y bph +1G) = > (aghy + I)gh.

geG  heG g.he@

Also (o + 1G)O(B + 1G) = (D (ag+ 1)g) (D (bn + I)h) = > (ag + I)(by +

Igh = > (azby + I)gh v'. .0 is a ring homomorphism. It remains to show

that 6 is bijective but we will do this on homework 2. ]
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Group Ring Representations

Definition 3.1 Let G be a finite group and R a ring. The R-module RG
(the group ring RG) with the natural multiplication ga (g € G, o € RGQ).
Now given g € G, g acts on the basis of RG by left multiplication and
permutes the basis elements. Define T : G — GL,(R) where g — 7T,
and T, acts on the basis elements by left multiplication. So if G = {g1 =
1,92,....9n} and 1, g; = gg; € G. The function T from G to GL,(R) is
called the (left-reqular) group representation of the finite group G over
the ring R.

Think of 7, as left multiplication by a group element or left multiplication
of a column vector by a n x n matrix.

Lemma 3.2 Let G be a finite group of order n. Let R be a ring. Then
the group representation T is an injective homomorphism (monomorphism)
from G to GL,(R).

Proof. Let g,h € G and g; € G where g; are the basis elements. We
want to show 7 (gh) = 7 (g)7 (h). Now 7T (gh).(g;) = (gh).g; = g(hg;) =
14(Tn(9:)) Vg9: € G =T (9)T(h)(gi). .. T(gh) = T(9)T (h).

1-1 : We must show that if 7(g) = I, € GL,(R) = ¢g = 1lg. Let
g € G with 7(g) = I,,. Then 7(g)(¢;) = g; Y¢; € G. In particular (with
gi=n=1c), T(g)(1)=I,=gl=1=g=1 u

Example 3.3 Let G=Cs=<al|a®=1>.

27
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o RG = {1+ X y.a+ A3.a?| \; € R}. What does g. look like (where g € G
and o € RG) 7

1(/\1.1+>\2.a+)\3.a2) = )\1.1"‘)\2.@"‘)\3.@2
(%) a(M\1.1+ Xg.a + Ng.a?) = A3.1 4+ M.a + Ng.a?
(**) GQ(/\1.1+/\2.CL+)\3.(12) )\2.1—1—)\3.a+/\1.a2

Correspondance
1 0 0
le«— 0], ae— |1 ],a?— | 0
0 0 1

(these are the basis elements which are acted upon, permuted by left-multiplication
by 3 x 3 matrices).

0 01 A1 A3
a— | 1 0 0 | from (x)a(A.1+X.a+03.6°) «——a | X | =| N ],
010 A3 A2
010 A
a> — | 0 0 1 | from (xx)a®(A\.1 + Ma.a + A3.0?) «—— a* | Ny | =
1 00 A3
A2
A3
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Note

a(>\1.1 -+ )\g.a + )\3.&2)

0 01 A1 0 0
~— 1 1 00 O |+ X |+ O
010 0 0 A3

0 01 A A3

- ]. O O )\2 = /\1

010 A3 A2

— )\31 + )\1.& + )\2.&2)

We can extend the definition of a left regular group representation to a left
regular group ring representation as follows :
Let R be a commutative ring and G a finite group. Define

7 : RG — M,(R), Zagg > Zag’fg

geG geG

where 7, acts on the basis G = {g1 = 1, g2, . . ., g, } by left multiplication (i.e.
Ty(9:) = 99i-

Lemma 3.4 7 above is a ring (write T, = T () ) homomorphism from the
group ring RG to the set of nxn matrices over R. Also T (ra) =rT () ¥V r €
R, VY a € RG. Also if R is a field then T : RG — M, (R) is injective.

Proof. Homework 2. [ |

If R is commutative then define
o det(a) =det(7 (a))
o tr(a) =tr(7 («))
e cigenvalue of () = eigenvalue of (7 («))

e cigenvectors of (a) = eigenvectors of (7 («)) where a € RG.
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Lemma 3.5 Let K be a field and G a finite group.

(1) If « € KG 1is nilpotent (i.e. Im € N such that o™ = 0), then the
eigenvalues of (T («)) are all zero.

(i) If B € KG is a unit of finite order (i.e. In € N such that f" = 1),

th

then the eigenvalues of (T («)) are all n™* roots of unity.

(2i3) If f(y) =0, 3y € KG and 3 f € K[z] (the set of all polynomials over
K) then f(\;) = 0V eigenvalues \; of (7 (7))

Proof. Note that (iii) = (i) and (i7). (i) Let o € KG with o™ = 0.
Let A be an eigenvalue of (7 («)) i.e. (7 (a))X = AX where X isan x 1
column vector with entries in K. Now (7 (a))"™. X = X" X. (T(«a))". X =
T ()™ X =T(0).X = 0,5, X = 0,%1 since 7 is a ring homomorphism.
SATX = 0px1 = A = 0,51 (since K has no zero divisors) = A = 0.

(ii) Let 8 € KG with " = 1. Let A be an eigenvalue of (7(f3)) i.e.
(T(B)X = AX. Now (7(p)"X = N.X. (T(p)X = T(f").X =
T(1).X = Ipn X = X, 2N X = X = X" =1 (since K is a field)
— )\ is an n'! root of unity.

(iii) Let f(y) =0V y € KG and 3f € K[z]. Let A be an eigenvalue of
(T(7) . (T(Y))X =XX. = f(T(7)).X = f(N).X since T is a K — linear
ring homomorphism on RG. f(7(v)).X =7 (f(y)).X =7(0).X =0.X = 0.
L FO).X =0 = f(\) =0. 5

Example 3.6 Let R be a ring and let G be a finite group. We define the
trivial group representation of G as :

100 ...0
010 ..0
T:G—GLy(R) gr—ILp,=|001..0
000 ...1

T(gh) = Inxn- T(9)T(h) = Lnxn-Insxn = Inxn. S0 T : G — {Lixn} = C) is
a group epimorphism.
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We now extend 7 to a group ring representation. 7 : RG — M, (R)
where

Zagg — Za’gT(g) = Z(aglnxn) = (Z ag)[nxn =€ (Z agQ) Ian

geG geG geG geG geG

Example 3.7 Let 29+ (—2h) € RG. Then T (29 + (—2h))

000 ...0
000 0
= £(29+(=20) s = (24=2)Insn = Ol = Opop = | 0 0 0 ... 0
000 ...0
Example 3.8 Let 29 + (—2h) + 21 € RG. Then T (29 + (—2h) = 21)
21 0 0
0 21 0
= £(29+(=2h)+21) I = (24—2421) [ = 2105y = | O 0 21
0 0 0

Note 7 : RG — M, (R) is onto and the Ker(7) = A(RG).

Lemma 3.9 Let G be a finite group and K a field. Let T be the left reqular
representation of KG and let v =3 . cqg € KG. Then the trace of T(7)
18

tr(T (7)) = |Gl.cy

(where ¢ is the coefficient of g; = 1. For example if v =2 + 3¢ + 4h € KG,
then ¢; = 2).

Proof. The traces of similar matrices are the same and so tr(7(y)) is
independant of choice of basis. Fix the basis G = {g1 =1,92,...,9,} (a K-

basis of KG). .. T(y) =T (Z cgg> = chT(g) = Z co, T (gi). It g #1,
gelG gelG =1
then gg; # g; V i so g permutes the basis of KG.
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So the matrix of 7(g) has all zero’s in it’s main diagonal. Hence the
tr(7(g)) =0V g € G except for g = 1.

L (T() = (Z g)

i=1

= Y cotr(T(g:)
i=1

= Cqtr (T(g1)) + coutr (T(g2)) + -+ + cg, 00 (7 (gn))
1 0 0 0
010 0

= Cgltl" 0 01 0 +04+---+0
0 0 0 1

= ¢4-|G|

= Cl.’G|

Theorem 3.10 (Berman-Higman) Let vy = Z cqeg be a unit of finite or-

geG
der in ZG, where G is a finite group and ¢y # 0. Then v = £1 = ¢;.

Proof. Let |G| =n and let v = 1. Considering ZG as a subring of CG, we
will consider it’s left regular representation and apply the previous lemma.
Then tr (7 (v)) = n.c;. Now 4™ = 1 therefore all the eigenvalues of 7 (v)

are the nth roots of unity.

St (T(y)) =te (T (Z Cy, gi>) = cotr(T(g)) = (eigenvalue of tr (7 (7))

i=1

Now 7 (7y) is similar to a diagonal matrix D (7 (y) v~ D). So tr (7 (vy) ) =tr D
=>" diagonal elements of D = > eigenvalues of D = > eigenvalue of 7 ()
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th

n
= Z n; where n; is an n** roots of unity.

=1

S.nep = Zm
i=1
Snel = 1D nl <7 ml =n.
i=1 i=1
’Cl‘ < 1:>(31::|:1

n
S.nep = E N =nor—mn, son =11

=1

sonc; = nn=mn==x1V1
T(y) - D=Torl
T(y) = Torl
But 7 : CG — M,,(C) is injective, so v = £1 (= ¢1). [

Corollary 3.11 Let v € Z(U(ZG)) where v =1 and G is finite. Then
v=+g3g € G. (i.e. all central torsion units are trivial ).

Proof. Let v € Z(U(ZG)) with v™ =1 and |G| = n. Let v = > ¢,0i
and let ¢, Z03ge € G. . vg2 = D1 ¢5.9:92 " (%) Is a unit of finite order
in ZG ( Let go™2 = 1, then (ygy~1)™™2 = qmm2(gy=1ymm2 = 1.1 = 1 since
is central).

Now from (x) the coefficient of 1 in vgo~! is ¢, # 0. Now applying the
Berman-Higman theorem to yg, ! to get that

Y g2 1::&1:%2:>fy:j:1.g2::|:g25|g2€G

Theorem 3.12 (Higman) Let A be a finite abelian group. Then the group
of torsion units of ZA equals +A.
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Example 3.13 What are the torsion units of ZC3 ¢ Just +Cj.
If O3 =< x|2® = 1 >= {1,2,2% }, then the torsion units of ZC5 are
+Cs ={1,z,2% —1,—x, —2*} X O3 x Oy =< x> X < —1 > (O X< —1 >.

Question : Are the torsion units of RG equals =G or U(R).G for all groups
G and rings R 7
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Decomposition of RG

Theorem 4.1 Let R be a semisimple ring with
R=a®!_,L,
where the L; are minimal left ideals. Then 3 eq,es,..., e, € R such that
(1) e # 0 is an idempotent for i =1,...,t.

)

(i1) Ifi# j, then e;e; = 0.

(tii) e1 +ea+---+e = 1.
)

(iv) e; cannot be written as e; = €, + e/ (where € and el are idempotents
such that eiel! =0=¢ee, ).

Conversely, if 3 ey, es,...,¢; € R satisfying the four conditions above, then
the left ideals L; = Re; are minimal and R = @®!_, L; (and .-. R is semisimple).
Proof. (=). Let R=®!_,L;, where L; is a minimal left ideal (for i =

{1,2,...,t}).
(iii) 1eR,sol=e;+es+---+e e € L.

(i) Indeed, e; = 1.e; = (e1 +ea+ - +e)e; = ere;+eae;+ -+ e+ +ep
— € — e = €16+ e+ e+ eipiei+ o+ ey
N \

€L; L1®Lo®-®L; 1DLiy 1P DLt
€i—€i2 e L1 ®LyP-- '@Lifl@LiJ’,l@' Pl — ei_€i2 =0=¢ = €i2.

35
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(ll) €i:(O,...70,1.€i,07...,0) ELl@"'@Lt. N
(0,...,0,1.¢;,0,...,0)(0,....0,1.¢;,0,....0) = (0,...,0) = 0.

(iv) Assume that (iv) does not hold, so e; = €] + ¢!, (where €} and e/ are
idempotents such that ele! = 0 = e’e} ). Note that R = &!_,L; = &_, Re;.
Re; C L; since e; € L; and L; is a left ideal. Show L; C Re;. Let a € L;.
Then a = a.l1 =a(e; +ex+ -+ +e) = ae; + aeg + - - + aey.

= a—ae; = ae; + aey + -+ ae;_1 + aejyq + - -0+ aey.
SN—— N 4

€L; L1@Lo®DL; —1OLi4 1D DLt

c.a—ae; =0= a=ae; € Re; and so Re; = [;.
L; = Re; = R(e; + €) = Re, & Re!. Now Re, and Re! are left ideal so L; is
not minimal. This is a contradiction.

(<) skip. |

Note : A set of idempotents {ej,es,...,e;} with properties (i),(ii) and
(iii) above are called complete family of orthogonal idempotents. If
{e1,eq, ..., e} has the property of (i)-(iv), then it is called a set of primitive
idempotents.

Theorem 4.2 (Wedderburn-Artin Theorem ) R is a semisimple ring
if and only if R can be decomposed as a direct sum of finitely many matrix
rings over division rings.

i.e. R M, (D)) ® Mu,(Dy) @ -+ @ M,_(D;)

where D; is a division ring and M,,(D;) is the ring of n; X n; matrices over
D;.

Theorem 4.3 Let R be a semisimple ring. Then the wedderburn-artin de-
composition above is unique.

ie. R @& M, (D;) 2 ®!_ M, (Dy) = s=1
and after permuting indices n; = m; and D; = Dy Vi€ l,... s.

Theorem 4.4 (Maschke’s Theorem ) Let G be a group and R a ring.
Then RG is semisimple if the following conditions hold :
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(1) R is semisimple
(17) G is finite
(13i) |G| is invertible in R.

Corollary 4.5 Let G be a group and K a field. Then KG is semisimple if
and only if G is finite and the characteristic K 1 |G|.

Proof. First note that any field K is semisimple (K = M;(K) and use a
previous lemma).

(<) Let |G| < oo and charK t |G|. So |G| € K \ {0}.

(=) |G| is invertible in K. Now apply maschke’s theorem = let KG be
semisimple. G is finite by maschke’s and also |G| is invertible in K so

|G| € K\ {0}. So |G| is not a multiple of char K € K. . K { |G|.
[

Theorem 4.6 Let G be a finite group and K a finite field such that char
Kt |G|. Then KG = @&;_,M,,(D;) where D; is a division ring containing

K in it’s center and
S

G| = (n®.dimg (D;))

i=1

Definition 4.7 A field K is algebraically closed if it contains all of the
roots of the polynomials in K[x].

Example 4.8 C is algebraically closed, while H is not.

Corollary 4.9 Let G be a finite group and K an algebraically closed field,
where char K t |G|. Then

KG=@_ M, (K) and |G]= Z”iQ
=1

Example 4.10 CCs. Note that Cs is finite and char C = 01 3 so maschke’s
theorem does apply and

CCs =2 ®;_M,,(D;) = ®;_;M,,(C) by the corollary above
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Counting dimensions we see that 3 = Z n;? Z 12. . D;,=C,n; =1V

and s = 3. ..CC3=CaCaqC. .. U(CC’g) = Z/{(C dCaC) =UC) x
U(C) xU(C).
The zero divisors of CC3 correspond bijectively to the zero divisors of

CpCaqC
— {(a.,0)a,b € C}U{(a,0,¢) |a,c € CYU{(0,b,¢) |b,c € T}

Example 4.11 CS;. S; is finite and C = 016 so maschke’s theorem does
apply and
CS3 = @] My, (D;) = @i, My, (C)

6 =124 12+ 22 or6—212 SoCS3 2 C@C @ My(C) o

CSs=2CapCapCo C GB C® C. But @)_,C is a commutative ring so
CS; 2 @), C.

0. C95 =2 CaCaM,y(C) and ... U(CS;3) Z U(C)xU(C)xGLy(C). The zero
divisors of CSy correspond bijectively to the zero divisors of C® C @ My(C).

= {(a,b,A)|a,b,e C, A€ ZD(My(C))}
{(a,0,A)|a, € C, A€ ZD(My(CT))} U{(0,b, A)|b, € C, A € ZD(M,(C))}

Example 4.12 Fy,Cy does not compose as @&;_, M,,(D;) since 2|2 (i.e char
Fa [|G1).

Theorem 4.13 (Wedderburn) A finite division ring is a field.

Example 4.14 F3Cy. Maschke’s theorem applies since |Cs| < oo and char
Fs{ |Co| . - FsCo = @ M, (D;). 2= (n;’. dimp,(D;)). Note that Fs

i=1

is not algebraically closed (check). So we need dim g,(D;). Now?2=1+1=

1.2. So dimp,(D) =1 or 2. . F3Cy = F3 @ F3 or . F3Cy = D where
FgCg = pF; or IF32

Question : Which one is it 7
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Theorem 4.15 The unit group of any finite field Fyn (with p a prime) is
cyclic of order p" — 1. So U(Fpn) = Cyny. So any element of Fyn has
(multiplicative) order dividing p" — 1.

Example 4.16 Consider F5. 1 = 1. 22 =4, 23 = 3, 2* = 1. 3% = 4,
33 =2, 3" =1. 42 = 1. Therefore the elements of U(Fs) have order 1,4,4,2.
These all divide 5 —1 = 4.

Thus U(Fgcg) = Z/{(Fg) X Z/{(F:;) = Cg X Cg or U(Fgcg) = Z/{(F32) = ng,l =
Cs. However (by homework 1) U(IF3C5) = Cy x Cy. So F3Cy 2 Fa2 so

]]'.?302 = Fg b Fg

(Alternatively, note that U(F3Cy) and F3 @ F3 contain zero divisors but Fse
does not).

Theorem 4.17 Let G be a finite group and K a field such that char K { |G].
Then
KG = @ M, (Di) = K & &5 My, (D;)

(i.e. the field itself appears at least once as a direct summand in the Wedderburn-

Artin decomposition).
Proof. Later u

Lemma 4.18 Let K be a finite field. Then if char K 1 |G| < oo, then
KG = @i My, (K)

where the K; are fields (i.e. all the division rings appearing are fields).

Proof. Clearly KG = &;_, M,,,(D;) where the D, are division rings. But D,
is a division ring such that dimgD; < oo (since G is finite). Now Wedder-
burn’s theorem implies that D; must be a field. [ |

Example 4.19 ConsiderF;Ss. F5S3 = &5, Mn,;(D;) = F;& EBf:_lani(Di) &
Fs @ @;2; My, (K).
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L BSIM,, (K) is a 5-dimensional vectors space over Fs. But FsSs is
non-commutative so n; > 1 3 1.

<. @iy M, (Ki) = Fs & Ma(F)
Fg,Sg = @leMTLl<Kl> = Fg) &) Fg, ) MQ(Fg))
Z/{(]F553> = Z/{(F5) X Z/{(F5) X U(M2<F5)) = 04 X C4 X GL2<F5)
GLy(F5) = {A € My(F5) | det A =0} = {A € My(F5) | rows of A are linearly independant.

a b\ 1 d —b
Check : ( . d ) = ( e a ) Now let’s count the size of
GL2<F5)

There are 52 — 1 = 24 choices for the first row (not including the zero row)
and there are 5> — 5 = 20 choices for the second row (not a multiple of the
first row). . |GLy(F5)| = (5% — 1)(5% — 5) = 480. .. U(F5S3) has order
4.4.480 = 7680.

Theorem 4.20 GLy(F,) is a non abelian group of order (p* — 1)(p* — p).
GLy(Fyn) is a non abelian group of order (p*™ — 1)(p* — p™). GL3(Fpn) is a
non abelian group of order ? (Homework).

Definition 4.21 Let x € G be an element of order n (i.e. ™ =1). Then
define
T=1l+z+2°+---+2""' € RG

Definition 4.22 Let H < G (H-finite so H = {hy,ha,...,h,}). Then
define

~

H=hy+hy+---+h,€ RH CRG.

SozT=<xz>€ R<x>C RG.

Lemma 4.23 Let H be a finite subgroup of G and R any ring (with unity).

1 ~
If |[H| is invertible in R then ey = |_H]'H € RH 1is an idempotent. Moreover

1 ~
iof HQG then ey = E.H s central in RG.
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Proof. (i) H < G.

1 ~ 1 =~
2
= — H—.
o H| " H]

1 ~, &
= ]HPZhiH where |H| = n.
i=1

1 o ~
~ w2t

1 ~
= ’HP.n.H
1 ~
= ’H’2.|H|.H
1 ~
= — H=c¢y

(ii) Let H < G. We will show that ey commutes with every element of

RG. Tt suffices to show that ey commutes with every element of GG. So
1

we must show that ey? = g legg = ey V g € G. Now ey? = glm-ﬁg

1
zmg‘l(h1+h2+---+hn)g hi+hy+ -+ hy) = eq. N

1
:m(

Definition 4.24 Let X be a subset of RG. Then the left-annihilator of
X in RG is
anny(X) ={a € RG|ax =0V r € X}

Similarly we can define the right-annihilator of X in RG is
annp(X) ={a € RG|z.a=0Vz € X}

Definition 4.25 Ag(G,H) = {Z ap(h —1)|ay € RG} We usually write
heH
Agr(G,H)=A(G,H).

Note : A(G, H) < RG (left ideal, check).
Note : A(G,G) = A(G).
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Lemma 4.26 Let H < G and R a ring. Then Qnn,(A(G, H)) # 0 iff H is
finite. In this case

anm(A(G, H)) = H.RG.
Furthermore, of H <G then H s central in RG and
ann. (A(G, H)) = Gnm(A(G, H)) = H.RG = RG.H

Proof. (=). Let’s assume that Gnn,(A(G,H)) # 0 and let 0 # a =
Y- agq € ann.(A(G,H)). Soif h € H we get (h — 1)a = 0 (since h — 1 €
A(G, H)).

— ha = a, s0 Y, a,9 = Y, azh,. Let g9 € suppa, so ay # 0. So
hgo € suppa V h € H. But supp « is finite so H is finite.

(«). Conversely, let H be finite. .. H exists and H € Qnn,(A(G, H)).
coann. (A(G, H)) # 0.

” In this case ... ” : Assume that Qnn,(A(G, H)) # 0 i.e. H is finite. Let
0#a=> a9 € ann.(A(G, H)). As before o, = apg,.

Now we can partition G into it’s cosets (generated by H) to get

a = Zagg

= agngU + ag1Hgl + e +agtHgt

t
= H (Z agigZ)
=1
— HB3IBe€RG
ann.(A(G, H)) C H.RG.
Clearly H.RG C Gnn,(A(G, H)) (since (h — 1)HRG = 0.RG = 0).

"Furthermore ...” easy. [ ]

Proposition 4.27 Let R be a ring and H < G. If |H| is invertible in R

1 ~
then letting ey = ‘H—l.H we have

RG = RG.ey ® RG(1 —ep)
where RG.ey = R(G/H) and RG(1 —ey) = A(G, H).
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Proof. ey is a central idempotent. By the Pierce decomposition
RG = RG.ey ® RG(1 —ey)

Now show RG.egy = R(G/H). Consider ¢ : G — Gepy where g — gey. This
is a group epimorphism since ¢(gh) = ghey, = gheg? = geghey = ¢(g)o(h).
Ker¢ ={g € G\gele ent={9€G|lgeg—en =0}={g € G|(g—1)ey =
0}=H since (g — 1)|H—|1§ = 0= gH=H.

G G
”Ker(b H mqb G@H

(by the 15t Isomorphism Theorem of Groups). Now Gep is a basis of the
group ring RGey so RG.eg = R(G/H).

Now show RG(1 —ey) = A(G,H). RG(1 —ey) = {a € RG|aRGey = 0}
= ann(RGey). Clearly, A(G, H) C ann(RGey) since Zah(l — h)RGeg

heH

1 -~
= Z ap(l — h)m.HRG = 0. It remains to show that Gnn(RGey) C A(G, H)

(skip). [

Corollary 4.28 Let R be a ring and G a finite group with |G| invertible in
R. Then
RG = R® A(G).

Proof. Let H = G < G in the previous proposition.

I

. RG = R(G/G)®AG,G)
R{1} & A(G)

R® A(G).

2

Il

Lemma 4.29 Let H < G and S a set of generators of H.Then {s—1|s € S}
is a set of generators of A(G, H), as a left ideal of RG.
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Proof. Let H =<s> . let1#he€ H .. h=552...5°, where s; € §
and g; = £1. Recall

Ap(G H) ={> an(h—1)|ay € RG}.

heH

So we must show that h€ H = h—1¢€ RG{s—1|s€ S}. Now h—1 =
1508 = 1=(51" s ) (5 — 1) 4 (517 se T — 1),

If &, = 1 then we are done (by induction on r). If ¢, = —1, then use
sst—1=s11-s,)=-ss,—1)and h—1€ RG{s —1|s € S}.
Note : weused 7' —1—2"'(1 —2) and zy — 1 = 2(y — 1) + (z — 1) and
induction on 7. n

Recall : If N <G then G/N is commutative if and only if G' < N.

Lemma 4.30 Let R be a commutative ring and I an ideal of RG. Then
RG/I is commutative if and only if A(G,G") C 1.

Proof. Let I < RG, R commutative. (=). RG/I commutative = V g, h €
G we have gh —hg € I. gh = hg = hg(g~*h~*gh — 1) = hg([h,g] — 1) € I.
= [h,g] —1€ 1. -.A(G,G") C I (by the previous lemma).

(<). Assume A(G,G") C I. Then gh — hg = hg([h,g] — 1) € A(G,G") C I.
o gh = hg mod A(G,G"), so g and h commute modulo I so RG/I is com-
mutative. n

Proposition 4.31 Let G be finite. Let RG be semisimple (i.e. RG =

1 —
5 M, (D;) ). Let eqr = @.G’. Then

RG = RGer S5 RG(l — 6(;/) = R(G/G/) S%) A(G, G/)

Here R(G/G’) is the direct sum of all the commutative summands of the de-
composition of RG and A(G, (') is the direct sum of all the non-commutative
summands of the decomposition of RG.
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Proof. Clearly RG = R(G/G') & A(G,G'). Now it is also clear that
R(G/G") = @& sum of the commutative summands of RG. It suffices to
show that A(G,G") contains no commutative summands.

Assume A(G,G") = A® B where A is commutative (and # {0}). Thus
RG = R(G/G")® A& B. Now RG/B = R(G/G") & A (check). (In general,
R=C@&®D = R/C = D). So RG/B is commutative, so by the previous
lemma , A(G,G") C B. Thus A(G,G") = A® B C B which is a cotradiction.

|

Definition 4.32 D,, =< z,y|a2"™ = y?> = 1, yzy = 271 > is called the
dihedral group of order 2n.

Note : D2.3 = DG = Sg.

Example 4.33 F3D,q. Note that Maschke applies so F3Dyg = &5y M, (D;)
~ s M, (K;) (where K; are finite fields containing F3) Fs & ®f_ M, (K;)

4

Note : Dyy =< z,y|z° 2 =1lyzy =a" > . [2,y] = a7y oy =

=Y
!
slyry =atat =28 =13 - Dy ><a®> 50Dy ><a>2Cs

o 3Dy = Fg(Dlo/D10/>EB non-commutative piece = F3CoP non-commutative piece
=3 d F3 & non-commutative piece. By counting dimensions we get either

F3Dy = Fs @ F3 @ My(F3) ® Mo(FF3)

or
F3D1g =2 F3 & Fy & My(F32)

Example 4.34 F;Diy. 5112 so maschke applies. F5Diy = @5 M, (D;)=
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F5@?;11Mm<Ki)'D12 =<,y 2 =y* =1, yry = 2° >. D12, =7

'y a*y ] = y I ly TRyt ik € {0,1,2,3,4,5) 4,1 € {0,1}
= aiygle Rk

i gk

DD R D) i b

x(—i)j(—1)+(i—k)(—1)(j+l)xk(—1)(2j+l)y2j+2l

DI D R (DG +R(-D)@i+) |

2 EDIEDFO DGR (D) GH)+HR(=1)(25+)]

— LHEDIEDHED G ED D EH) (1) (250}

Now consider a number of cases

(1) j and l even :

[, ]= pHIF R 1) 0

(17) j even and l odd :

[,]= LA ED R () 2

(7i1) 7 odd and l even :

[ ’ ] _ xi{1+(—1)}+k{1+1} _ x2k

(1i1) j andl odd :

[, ] = g/ UHFkIHED} — g 22k

D12/ = {1ax27$4} = (s
D12/D12/ = Cy or Cy x Cy (considering sizes)
Note : Dy = D6 X Cg also 012 % C@ X CQ but 012 = 03 X 04. Do = DG X
Co=<22yl(@®)P =y*=1y@?)y= (221> x <23 > ={a¥y/a%|ic
{0,1,2}, j €{0,1}, k € {0,1}}.
. D12 D6 X 02 D6

: ;= 2 — x Uy =0y xC
Dy Cs C'3>< ? 2%
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F5D12 = Fg,(CQ X Cg) @ NCP
FsDiy =2F; @ Fs @ F; @ Fs & NCP

.. NCP has dimension 8. So NCP = My(F5) & My(F5) or NCP = My(Fs2).

So L[(]F5D12) = 04 X 04 X 04 X 04 X GLQ(IFE)) X GLQ(]F5) or
U(F5D12) = C4 X 04 X C4 X 04 X GLQ(]F52).

U(FsDio)| = (p — 1)H{(p* = D(* - p)}* = 4{(24)(20)}* = 2'°3°5*

or

U(FsDis)| = (p = 1){(¢* = D(¢* — q)} = 41{((5*)* = 1)((5°)* = 5°)}

Note that D1y < U(F5D15 so 12 | [U(F5D12)|. But 12 divides the order of
both cases so this does not help to differentiate between them. Also, U =
Z/{(F5D12) Z/{(Fg,(DG X CQ)) > Z/{(F5D6) and U > Z/{(FE,CQ)

Lemma 4.35 Z(M,(K)) = Lixn. K. Thus dimg(Z(M,(K))) = 1.

Definition 4.36 Let G be a finite group and R a commutative ring. Let
{Ci}ier be the set of conjugacy classes of G. Then

é\i:ZCERG

ceC;

is called the class sum of C;.

Theorem 4.37 Let G be a group and R a commutative ring. Then the set
of class sums {C;} of G forms a basis for Z(RG) over R. Thus Z(RG) has

dimension t over R, where t is the number of conjugacy classes of G.

-~

Proof. Let @Z be a class sum. Let g € G. Then @g =5 . @ € Z(RG).
Let « = Y a,9 € Z(RG). Let h € G. Then o = a so ag = a4 (
coefficient of g = coefficient of g"). Thus the entire conjugacy class C;
has the same coefficient in the expansion of a. ... a = ch i (¢; € R).

icl
Z(RG) C {linear combinations of C; over R}.
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.. Z(RG) = {linear combinations of C; over R}.

It remains to show linear independance of {@} Suppose Z ¢;C; = 0. Then
iel

we have an R-linear combination of elements of G, but the elements of G are

linear independant over R. So the coefficients are all 0.

~

Zc,Ci:0:>cz-:0Vi€]

iel
{@} is linear independant over R. [
Recall the class equation of a finite group G. Let {zy,x2,...,2;} be a com-

plete set of conjugacy class representatives of G. Let ¢(z;) = conjugacy
t

class containing z;. Let n; = |C(x;)] = [G : Cg(x;)]. Then |G| = an
i=1

t

= th Cla)| =[G : Calw:)] = |Z(G) + D ni. (Note: n; =1 ;€

z@).

Lemma 4.38 Let G be a finite group and C the complex numbers. Then
CG =2 @l M,,(C)

where t = the number of conjugacy classes of G.

Proof. dimcCG = f of conjugacy classes of G. .. dimcZ(®_, M,.(C))
t t

=Y dimcZ(M,,(C) => 1=t |
i=1 i=1

Example 4.39 Fg,CQ = IF5 EBFE) Here Z(]F5CQ> = FE)CQ SO dzmpsZ(IF5Cg) =
dimp, (F5Cy) = 2 = 4 of conjugacy classes of Cy. (Cy = {1,2} = {1} and{x}

are the only conjugacy classes of Cy).

Example 4.40 F553 X F5s ®Fs ® My(F5). Sz =< z,y|2" =y* =1, yry =
x>, S; =< % > Cs. .53 53 =2 s
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]F553 = F502 @ NCP
= FyaF;® NCP
= Fs @ Fs @ My(F5).
Z(F583) = Z(Fg) b IF5 b MQ(Fg,))

I

Fs & F5 @ Z(My(Fs))
Fs @ Fs @ Iryo.IF5
Fs & F5p Fs.

12

I

This is a 3-dimensional vector space over F5 (with basis {(1,0,0), (0,1,0), (0,0,1)}).
..S3 has 3 conjugacy classes. We proved this group theory result using group
Tings.

Now using group theory, find the 3 conjugacy classes of Sj.

Theorem 4.41 Let R be a commutative ring and let G and H be groups.
Then
R(G x H) = (RG)H.

Proof. Homework 2. [ |

Corollary 4.42
R(G x H) = (RG)H = (RH)G

Proof. R(GxH) = R(H xG) and now use the theorem. Note GxH = HxG
by (g,h) = (h,g). -

Corollary 4.43

R(Gl X G2 X X Gn) = (((RGl)Gz) .. )Gn
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Theorem 4.44 Let {R;}icr be a set of rings and let R = ®;crR;. Let G be
a group. Then
RG = (@i Ri)G = D1 (RiG).

Proof. Homework 2. [ |

Example 4.45 FE,OG. FE,OG = ]F5(CQ X 03) = (F5Cg)03 = (]F5 b IF5)03 =
F5Cs @ F5Cs.

NowF5C3 2 Fs @ F5; @ F;5 or F5sCs X Fs @ Fs2. . U(F5C5) = Cyx Cy x Cy
or Cy x Cyy. But C3 < U(F5C5), so by lagrange’s theorem , 3 | U(F5C5).
However 3 1 |Cy x Cy x Cy| and 3 | |Cy x Co| so U(F5C3) = Cy x Coy and
F50g = IF5 D IF52.

.'.IF5CG = U(F503)@U(F503)
I[;‘5 7] F52 D F5 D F52
~ F,®F;®Fs @ Fsp

12

Theorem 4.46 (Fundamental Theorem of Finite Abelian Groups)
Let A be a finite abelian group. Then

AgG1XG2X"'XGn
, where G; is a cyclic group of order p;"", where p; is some prime.
Example 4.47 Let A be an abelian group of order 30 = 2*.3*.5. Then

A

12

Cso

Cs x Cy

Cs x O3 x (Y
Cis x Cy

Cho x Cy

1 1m

12

These are all the same because 2,3 and 5 are all relatively prime.

...AgCQXCf}XC%.
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Example 4.48 024 = 023_3 = 023 X 03 % 06 X C4 = 02 X Cg X 04 =
Cy x Oy x Cf5.

Example 4.49

F.C5 = F7(Cy x C3 x Cs)
(F1C5)(Cy x Cs)

(Fy & Fr)(Cy x Cs)
(F7 © F7)C3)Cs)
(F+Cs & F-C5)Cs)
F7Cs)Cs @ (F-C)Cs
0

(11 11 1R

12

It is not obvious what F7C5 is ! (Lagrange’s theorem doesn’t help).
Hey Leo i thought I'd help you out here !!!

F703 = F7@F7@F7 (Since |Z/{(]F7Cg)| =216 = 63 and Z/{(IF703) = C@XC@XCG).
So F;Csy = (Fr @ F; dF;)C5® (Fr @ F ®F7)Cs = {@7_, Fr}Cs & {@}_, F}C5
= {@?:1F7}C5 = @?:1{F7C5}. Also F7C5 = IF7 ) F74 (since |Z/{(F7C5>’ =
14400 = (7—1)(74—1) and U<F7C5) = Cﬁ XC2400) SO F7C30 = @?:1{F7@F74}.

]F7030 = @?:1F7 @2-6:1 ]F74

Example 4.50 F;D, 2 F; & F; & F; & F5 @ Mo(F5) ® Mo(F5) or FsDg =
Fs @ F5 @ F5 @ Fs5 @ My(Fs2).

We mentioned before that D1y = Dg x Cy. . F5D1y = F5(Cy x Dg) =
(F5Cy)Dg = (F5 @ Fs) Dg = Fs Dg @ Fs Ds.

25Dy = (Fs@F5 @ My(F5)) @ (F5 ©F5 ® My(Fs)) = @flews@@?:le(Fs)-

Note : CS;3 ZCaCa My(C) but QS; = Q@ Q@ H where H is the division

ring of quaternions over Q.

The End



Appendix A

Extra’s

A.1 Homework 1 + Solutions

’ Homework 1 ‘

Q1 For the following group rings, (i) find the group of units and show what
abstract group it is isomorphic to, (ii) find the augmentation ideal and (iii)
fing the set of zero-divisors.

What conjectures can you come up with after doing these examples ?

52
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(g) U(ZyS3) contains 12 elements. Find these 12 elements and find the
abstract group of order 12 which /(Z>S3) is isomorphic to. (Hint : use
24 83+ y+ S; where S3 = 1+ z + 22 +y + xy + 2%y). (ignore the

zero-divisors for (g)).

Note : Bonus question (optional).

(h) Find the zero-divisors of ZySs.
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A.2 Homework 2 + Solutions

’ Homework 2 ‘

Q1 Find the abstract group structure of U (FyDy5). Hints :
1 Note that Maschke’s theorem does not apply.
2 D12 = CQ X DG-
3 U(FyDg) = Dy
Q2 Find the size of the group U(Fy,Dy5). Hint : |U(F3Ds)| = 324.
Q3 (a) Show that Dg = C,.
(b) Show that Dg/Dg = Cy x Cs.
(c) Conclude that F,Dg = (&1 ,F,) & My(F,). (where p # 2).
Q4 (a) Find all the conjugacy classes of Dg (there are 5).
(b) What is dimp, Z(F,Ds).
(¢) Conclude that F,Dg = (&} |F,) & My(F,). (where p # 2).
Q5 Let R be a commutative ring and let G and H be groups. Prove that
R(G x H) = (RG)H.

Q6 Let {R;}icr be a set of rings and let G be a group. Let R = @;c;. Show
that RG = @161R1G

7 The quaternion group of & elements has the following presentation:
Q q group gp
H=<abla*=1,a*=0b* bab ' =a"' >
(a) Show that H =< a?® >

(b) Show that H/H = Cy x Cs.
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(c) Conclude that F,Dg = (9} F,) & My(F,). (where p # 2).

Q8 We showed in class that either
F3Dyg = F3 @ F3 @ My(F3) ® My(FF3)

or
IFBDlO = Fg (&) Fg () MQ(FgQ)

Use lagranges theorem to determine which one of the two isomorphisms above
applies.

Q9 Using the presentation of H given in Q7, show that < @ > is a central
idempotent of F3H. List all the elements of Gnn, A(H, < a >) in the group
ring [F3H.

Q10 Find |GL3(Fpn)|.



APPENDIX A. EXTRA’S

A.3 Autumn Exam + Solutions

o6



