1.3 Isomorphism Theorems

Theorem 1.49 (1st Isomorphism theorem for groups) Let $f \mapsto S$. Then $G/N \cong S$ where N = Ker(f).

For rings , the kernal is an ideal. Let G be a group, $H \lhd G$ and $N \unlhd G.$ Then

Example 1.50 $S_3 = \langle x, y | x^3 = y^2 = 1, yxy = x^2 \rangle$. Let's construct a lattice diagram of subgroups

Now consider $\omega: R \longrightarrow R/I$ where $\omega(r) = r + I$ (the cononical projection). Let $J \supseteq I$, then $\omega(J) = \{j + I : j \in J\} = J/I \subset R/I$. J/I is not only a subset, it is also an ideal of R/I i.e. $J/I \triangleleft R/I$.