$$f(n+m) = n + m + p\mathbb{Z}$$
. $f(n) + f(m) = n + p\mathbb{Z} + m + p\mathbb{Z} = n + m + p\mathbb{Z}$.
 $\therefore f(n+m) = f(n) + f(m)$. Also $f(n-m) = f(n) - f(m)$.

 $f(nm) = nm + p\mathbb{Z}.$

$$f(n)f(m) = (n + p\mathbb{Z})(m + p\mathbb{Z})$$

 $= nm + np\mathbb{Z} + mp\mathbb{Z} + p^2\mathbb{Z}\mathbb{Z}$
 $= nm + p(n\mathbb{Z} + mp\mathbb{Z} + p\mathbb{Z})$
 $= nm + p\mathbb{Z}$

Thus f(nm) = f(n)f(m) and f is a ring homomorphism.

$$Ker(f) = \{n \in \mathbb{Z} \mid f(n) = 0\} = \{n \in \mathbb{Z} \mid n + p\mathbb{Z} = 0_{\mathbb{Z}_p} = 0 + p\mathbb{Z}\} = \{np \mid n \in \mathbb{Z}\}$$

Since $f(np) = np + p\mathbb{Z} = p(n + \mathbb{Z}) = p\mathbb{Z} = 0 + p\mathbb{Z} = 0$. So $f : \mathbb{Z} \longrightarrow \mathbb{Z}_p$ has $kernal\ p\mathbb{Z}$.

Let $I \triangleleft R$. Then consider the set $R/I = \{I + r : r \in R\}$. Define

- addition by (r + I) + (s + I) = (r + s) + I.
- multiplication by (r + I)(s + I) = (rs) + I.

R/I is a ring (check i.e. $0_{R/I} = 0 + I$, $(r + I) + (-r + I) = 0 + I = 0_{R/I}$, and so on).

Consider the ring homomorphism $f: R \longrightarrow R/I$ defined by f(r) = r + I. What is Ker(f)? $Ker(f) = \{r \in R : f(r) = 0\} = \{r \in R : f(r) = 0 + I\} = I$ (Since if $i \in I$, we have f(i) = i + I = I).

Therefore given any ideal I of a ring R, we can come up with a ring homomorphism $f: R \longrightarrow R/I$ such that I = Ker(f). Note that we often write $f(r) = r + I = \overline{r} \ (r \mod I)$.

Example 1.48 $p\mathbb{Z} \triangleleft \mathbb{Z}$, $p\mathbb{Z}$ is the kernal of the homomorphism $f : \mathbb{Z} \longrightarrow \mathbb{Z}_p \cong \mathbb{Z}/\mathbb{Z}_p$.