Similarly we could define a right ideal of R. If L is a left ideal of R and a right ideal of R, we say that L is a **two-sided** ideal of R.

*** (used in the same way that normal subgroups are used in group theory). i.e. If $N \lhd G \Longrightarrow G \longrightarrow \frac{G}{N}, \ g \mapsto g.N$ is a group homomorphism with kernal N and image $\frac{G}{N}$, the factor group or quotient group of G by N.

$$\frac{G}{N}=\{gN\,:\,g\in G\}.$$

Recall: 1st, 2nd and 3rd isomorphism theorems of groups.

Let I be an ideal of R. We write $I \triangleleft R$. Notice that I is a ring (usually without the multiplicative identity 1_r). $\Longrightarrow I$ is a subring of R.

Example 1.39 Consider the ring $(\mathbb{Z}, +, \cdot)$. Let $n \in \mathbb{Z}$. Then $I = n\mathbb{Z} = \{n.a : a \in \mathbb{Z}\}$ is a (two sided) ideal of \mathbb{Z} , since

$$na - nb = n(a - b) \in n\mathbb{Z} \forall a, b \in \mathbb{Z}$$

 $c(n.a) = n(c.a) \in n\mathbb{Z} \forall c \in \mathbb{Z}$

Example 1.40 Consider the ring $(\mathbb{Z}_6, +, \cdot)$. What are the ideals of $(\mathbb{Z}_6, +, \cdot)$? Now consider the subset $I_2 = \{2.a : a \in \mathbb{Z}_6\} = \{0, 2, 4\}$. I_2 is an ideal of $\mathbb{Z}_6\}$ (exercise). $I_3 = \{3.a : a \in \mathbb{Z}_6\} = \{0, 3\}$ is an ideal of $\mathbb{Z}_6\}$ (exercise). $0 = \{0_{\mathbb{Z}_6}\} \lhd \mathbb{Z}_6\}$. Also $\mathbb{Z}_6 \unlhd \mathbb{Z}_6$. Note that $\mathbb{Z}_6\}$ is the only ideal of $\mathbb{Z}_6\}$ which contains $1_{\mathbb{Z}_6}$. Note : $I_1 = \{1.a : a \in \mathbb{Z}_6\} = \mathbb{Z}_6$. Are there any more ideals of \mathbb{Z}_6 ? Let I be an ideal of \mathbb{Z}_6 . What is the size of I?

Lemma 1.41 (Langrange theorem for rings) Let I be an ideal of a finite ring R. Then |I| / |R|.

Proof. (R, +) is a group, (I, +) is a subgroup. Apply Lagranges theorem (for groups), we get |I| / |R|.

Applying this lemma to the previous example, we see that |I| = 1, 2, 3 or 6. If |I| = 1, then $I = \{0_{\mathbb{Z}_6}\}$. If |I| = 6, then $I = \mathbb{Z}_6$. If |I| = 2, then $I = \{0, 3\}$. If |I| = 3, then $I = \{0, 2, 4\}$. Thus \mathbb{Z}_6 has 4 ideals.