Clearly (\mathbb{F}_2C_2, \cdot) is not a group (since $0.a = 0 \ \forall \ a \in \mathbb{F}_2C_2$). Also $(\mathbb{F}_2C_2 \setminus \{0\}, \cdot)$ does not form a group (since $(1+x)^2 = 0$ and 0 is not an element of $\mathbb{F}_2C_2 \setminus \{0\}$. Note: that the unit group of \mathbb{F}_2C_2 is $\{1, x\}$. $$\mathcal{U}(\mathbb{F}_2C_2)$$ $$U(\mathbb{F}_2C_2) = \{1, x\} \cong C_2$$ | | 1 | x | |---|---|---| | 1 | 1 | x | | x | x | 1 | Conjecture 1.33 U(RG) = G. Note that G is isomorphic (as a group) to a subgroup of U(RG) via the embedding $$\theta : G \hookrightarrow U(RG) \quad g \mapsto 1.g$$ We often associate G with $\theta(G) < \mathcal{U}(RG)$ and abusing the notation, we write $G < \mathcal{U}(RG)$. Recall that in \mathbb{F}_2C_2 , $(1+x)^2=0$. So 1+x is the only zero divisor of \mathbb{F}_2C_2 . Conjecture 1.34 $RG = \{0\} \cup U(RG) \cup ZD(RG)$ (where ZD(RG) are the zero divisors of G. Consider (1) \mathbb{F}_3C_2 and (2) \mathbb{F}_2C_3 . F₃C₂ $\mathbb{F}_3C_2 = \{a.1 + b.x \mid a, b \in \mathbb{F}_3\}$. There are 3 choices for $a \in \{0, 1, 2\}$ and there are 3 choices for $b \in \{0, 1, 2\}$ so there are 3.3 = 9 elements in \mathbb{F}_3C_2 . (2) F₂C₃