

Foundation of Mathematics I

2020-2021

Course Outline First Semester

Course Title: Foundation of Mathematics (1)

Code subject: 54451123

Instructors: Dr. Bassam Al-Asadi and Dr. Emad Al-Zangana

Stage: The First

Contents

Chapter 1	Logic Theory	Logic, Truth Table, Tautology, Contradiction,	
		Contingency, Rules of Proof, Logical Implication,	
		Canonical Form, Conjunctive Normal Form,	
		Quantifiers, Logical Reasoning, Mathematical Proof.	
CI 2			
Chapter 2	Sets	Definitions, Equality of Sets, Set Laws	
Chapter 3	Relations on Set		
Chapter 4	Algebra of Mappings	Mappings, Types of Mappings, Composite Mapping	
	, , , 0	and Inverse.	

References

- 1-Fundamental Concepts of Modern Mathematics. Max D. Larsen. 1970.
- 2-Introduction to Mathematical Logic, 4th edition. Elliott Mendelson.1997.
 - 3-اسس الرياضيات, الجزء الاول. تاليف د. هادي جابر مصطفى, رياض شاكر نعوم و نادر جورج منصور. ١٩٨٠.
- 4- A Mathematical Introduction to Logic, 2nd edition. Herbert B. Enderton. 2001.

THE GREEK ALPHABET

letter	name	capital
α	Alpha	A
β	Beta	В
γ	Gamma	Γ
δ	Delta	Δ
ε	Epsilon	E
ζ	Zeta	Z
η	Eta	H
θ	Theta	Θ
1	lota	I
κ	Kappa	K
λ	Lambda	Λ
μ	Mu	M
ν	Nu	N
ξ	Xi	Ξ
0	Omicron	0
π	Pi	П
ρ	Rho	P
σς	Sigma	Σ
τ	Tau	T
υ	Upsilon	Y
ф	Phi	Φ
χ	Chi	X
Ψ	Psi	Ψ
ω	Omega	Ω

Chapter One Logic Theory

1.1. Logic

Definition 1.1.1

- (i) Logic is the theory of systematic reasoning and symbolic logic is the formal theory of logic.
- (ii) A **logical proposition** (statement or formula) is a declarative sentence that is either true (denoted either T or 1) or false (denoted either F or 0) but not both.

Notation: Variables are used to represent logical propositions. The most common variables used are p, q, and r.

Example 1.1.2.

x + 2 = 2x when x = -2.

All cars are brown.

 $2 \times 2 = 5$.

Here are some sentences that are not logical propositions (paradox).

Look out! (Exclamatory)

How far is it to the next town? (Interrogative)

$$x + 2 = 2x.$$

"Do you want to go to the movies?" (Interrogative)

"Clean up your room." (Imperative)