LR 3. POWER SERIES SOLUTIONS

1t i important to understand the muin ideas in the proof above, beenuse we will follow
these ideas to find power sevies solutions to differentinl equations. So we now summarize
the main steps in the proof above:
(&) Write a power serles expansion of the solution centered at a regular point 7o,

(L]

yla) = Z ay, (& = ao)".

n=0

(1) Intraduee the power series expansion above into the differential equation and find a
rcurrenee relation anony the cocllicients dy.

(©) [olve the recurtence relation i terms of free coulhicients.

(@) 1 poassible, add up the resulting power series for the solutions #, ¥2-

We follow these steps in the examples below to find solutions to several differential

equations. We start with a first order constant coefficient equation, and then we continue
with & second order constant coeflicient. equation. The last two examnples consider variable

caetlicient equations.
Example 8.1.2. Find a power series solution y around the point o = 0 of the equation

y +ey=0, ceR.

Solution: We already know every solution to this equation. This is a first order, linear,
differential equation, so using the method of integrating factor we find that the solution is
yle) = ape™ " up = R.

We are now interested in obtaining such solution with the power series method. Although
this is not a second order equation, the power series method still works in this example.

Propaose a solution of the form

oo o0
y= Z ap " = Y= Zmr,. £n-h,

n=0 n=l1
We can start thesuminy’ atn=0orn=1 We choose n = 1, since it is more convenient
later on. Introduce the expressions above into the differential equation,

oo

oo
Z na, "' + cz ay 2" = 0.

n=1 n=0
Relabel the first sum above so that the functions 2"~ ! and 2" in the first and sccond sum

have the same label. One way is the following,

oo [+ ]
Z(n + l)u(,,.,_l);:“ + Zf_‘u.1 2" =0

n=0 n=0
We can now write down both sums into one single sum,

o0
Z[(n + ey +cap) 2" = 0.
n=0

Since the function on the lefi-hand side must be zero for every
every coeflicient that multiplies " must vanish, that is,

z € R, we conclude that

(n+ l)ﬂ{,,+1' +cay, = 0, n=0.
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3.1. SOLUTIONS NEAR REGULAR POINTS
The solution of

covllicients an.
g the general

The last equation is called a recurrence elation among the ;
1 then guessin

this relation can be found by writing down the first few cases ane
expression for the solution, that is,

n=40, ay, = -cag = 1y = —Cfos
n=1, 2a, = —ca, = a, = ETﬂm
e
n=2 303"—"’(‘0; = ﬂsz-—-a—Iﬂo.
T
n=3, day = —cay = ag = 7j o

One can check that the coefficient a, can be written as
Cﬂ
a, = (—1)": ag,

which implies that the solution of the differential equation is given by

1t
n=0 n=0 4

S I X

.~ Example 3.1.3. Find a power series solution y() around the point o =0 of the equation

y' +y=0.

Solution: We know that the solution can be found computing the roots of the characteristic
polynomial r2 + 1 = 0, which gives us the solutions

u(xr) = ag cos(x) + a, sin(r).

We now recover this solution using the power series,

[=<]

oc o
y= Z a" = ¥= Znan - = = Zn(n - l)a,la:[“'z).
n=0

n=1 n=2

Introduce the expressions above into the differential equation, which involves only the func-
tion and its second derivative,

oc

o0
Z n(n —1)a, "2+ Zanr“ =0.
n=0

n=2

Relabel the first sum above, so that both sums have the same [actor 2. One way is,

oc [+ o]
> (n+2)@+ Doz 2" + Y anz"=0
n=0 =0

Now we can write both sums using one single sum as follows,

oc
Y [(n+2)(n+ Do +an] 2" =0 = (24204 Daguin +an=0. >0,

n=0
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The solution of thi ¢olation ean again be fomined

The last cualion je the nonrow e rvlolion ,
valyes of n, that ie,

1 wrlting down the Toet Tew cases, and ww start with even

1
n=10, (2)(V)ay = =ns e L A i; al
1
ne 2, (N(Nag = —oy ’ LA AT S
[
"4, (6)(5H)ng = -~ o » a6 = =gt

One van check that the even corflicients aze can be wrilten is

y [
[-1)
an = ——*-—'—(l‘-

(24)

i e w nt is
The coeflicients a,, for the odd values of n can be found in the same way, th .

n= 1, (3)(2)ﬂ3 = =0 = 1y = "ﬁ iy,
1
n=3, (5)(1)as = —as = ag = g au
1
n=75, (7)(6)as = —as = a7 = =3 ay.

One can check that the odd coefficients azesy can be written as

¥

H2k+1 = m ay-

Split the sum in the expression for y into even and odd sums. We have the expression for
the even and odd coeflicients. Therefore, the <olution of the differential equation is given by

T )R Gl o | ™
y(x) = ﬂokzﬂmrgk +a, Z Rk +1)! gkl

k=l

One can check that these are precisely the power series representations of the cosine and
sine [unetions, respectively,

y(z) = ao cos(r) + @, sin(x).
<

£ Example 3.1.4. Find the first four terms of the power series expansion around the point
1o = 1 of each fundamental solution to the differential equation

y"—Iy'—y=0.
Solution: This is a differential equation we cannot solve with the wethods of previous

sections. This is a second order, variable coefficients equation. We use the power series
method, so we look for solutions of the form

L o0 &
= zau(:ﬁ -)" = Y= Znan(:r -1l = = Zn(n S T o L
n=0 n=1 n=2
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Wo st workbg i the widdle e i e difleventind equution, Since the power serfes is
centored worg = 1, it i comvenlent (o ro-welto this torm ny & y=[(r-1)4 1y, that Is,

o

ry e Z naya(e - )"

ne|
[N}

= Zml,,[(.}: = 1) - 1“-1' e P

ne|

= Znn,.(a' =1)" 4 Enn,,(m - 10, (3.1.4)

nal nm=|

As usial by uuw., the first sam on (e right-hand side of Bq. (3.1.4) can start nt n = U, since
We ato only adding a zero Lerm Lo the sum, that i,

o0 [+ %]

Z:m,. (x=1)"= Znn,.(x— 1)

h=| n=0

while it is convenient, 1o relabel the second sum Eq. (3.1.1) follows,

o o
Zﬂﬂ,.(:r e R Z(ﬂ + Dagy(z - 1)"
n=| ne()

50 both sums in Eq. (3.1.4) huve the same factors (x = 1)", We obtain the expression

o0 o9
D DUNCES VL o A A

n=() n=(}
oo

= Z[ﬂn,. +(n+ l)a[,,.m](x - 1" (3.1.5)
n=0

Inasimilar way relabel the index in the expression for ¥, 50 we obtain
oo

v'=) (n+2)(n+ Dagyz(x - 1)". (3.1.6)

n=0

Il we use Egs, (3.1.5)-(3.1.6) in the differential cquation, together with the expression for y,
the differential equation can be written os follows

o o0

Z(n +2)(n+ Dageg(z - 1)" - Z[rm,, +(n+ I)a(,,.H}](z =)= Zn,.(:r -1 =0

=) n=0 h=0
We can now put all the terms above into o single sum,

o0

Z[(n +2)(n + Doy = (n + Dagyyy = na, - a,,] (z-1)"=9.

n=0

This expression provides the recurnence refation for the coefficients a,, with n 2 0, that s,
(4 2)(n + Dagya) - (n + Dagegay = (0 + a, =0
(n+ 1)[(11 + 2)agq0 - Qugr) = a,.] =,
which can be rewritten as follows,

(” - 2)(!{.,1.2’ = "[ll'i'i} ~ iy =1, {3]?)
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Wo e solve this veerrrones volathon tor the et toue covllicients,

. o o
nel N TTI TR L “h iy = 2 | Ik
iy iy
ne=| NITH iy ! ) "y iy ;)" |- ”-
0y, My
nesd ding = g =y =0 =) =y I Y ik

ain the power sorles expresalon for the golution y of the differentind

g m g ok oyl = 1) 4 (r:. | "-.3)(-!' 0?4 (f;lg ’ (3)(“, LM (‘(‘iﬂ " ’T'IL)(J. ) e

Therelore, the st tovm
egquation mre piven by

whileh enn be vewrltben ns

q p l ’
Y= ”"Il |- %(.r‘ - 1% ili(;r - 1) “-(‘l-' 1)t ]

Fafle =14 gl D S =1 Y=y ]

So the fiest four teries on each [undutnental solution aro plvon by

',(-r 1y 1) ,,i'}(:,., ",

h Lt G

o

<]

Fined the first three torms of the power sories expansion around the point

yr Exmmple 3.1.5.
(o the differentinl oquution

£ = 2 of vach fundmnental solution

y'—ay =0

Ve then look for solutions of the form

o0
Y= Z an(x—=2)"

nea()

Solntion: \

1L Is conveniont Lo rewrite the function @y = [(# = 2) - 2]y, that is,

o0

ay = Z aya(z - 2)"

n=(

= Z (ty I(::r - 2) |- ZJ (z = o

ne=()
o o0

=Y au(z -2+ Y 20 (w - 2)". (3.1.8)
nesl) n=(0

Wo now rolabel the first sum on tho right-hand side of Eq. (3.1.8) in the following way.

Z ay (e = 2)"H = z a-1){T = 2)". (3.1.9)

ne=l) el
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Then 1 o fithernerit inl Mjusi ki pluAv can be written an fodlow 'l
; B

" ~ »
ey iy " |

(n4 2in 4 lasgaglr - 257 2 2a.(xr - 2)" ~ E L PO R § B ¢ |
e 1] =] me ]

~
T .
(2){1)ay - 24, 4 )_,1“" +qn+ ey - 20, -0, n; (r-N"=0

nel
Sothe securvair velation for the coefficients a, s given by

f; -, =), (n42in4 )00z -27._—(_—1__;,7(]_ n2l

We ean solve this recurrence relstion for the first four coeicients.

toe=) a;—a, =0 = ay =y,
Qy ay
n=| (3)(2)ay — 20, ~a, =00 = Oy = — 4 —,
6 3
, [T
"z 3 (4)(3)ag ~ 28, - a, =0 = ay = T o 73

Therelore, the first terms in the power seties expression for the solution Y of the ditferentinl
equation are given by

I ]
Yoo+ ay(x - 2) + aolr - 2)? + (Ek + f‘i'-)(.r ~2 4 (% + ;—;)(: - )

which can be rewritien as
P | 1
V= no[l + (x = 2)° +E(I—2]3 + -6(.:- 2 +]
oyl o, 1 '
+a,[(r——.2)+§(:—2} TRt
S0 the finst three wrms on cach fundamental solution are given by
s 1

M=1+u=2r+§u—m?

(z-2P+ Liso 2)!

o
w=lr=3)+g 12

g

3.1.3. The Legendre Equation. The Legendre equation sppears when one solves the
Laplace cquation in spherical coordinates. The Laplace equation describes several phenom-
enat, such as the static electrie potential near a charged body, or the gravitational putentianl
of i planet or star. When the Laplace equation describes a situation having spherical sV -
metry it makes sense to use spherical coordinates 1o solve the cquation. It is in that case
that the Legendre cquation appears for a variable related (o the polar angle in the spherical
coordinate system, See Juckson's classic book on clectrodynamics (8. § 3.1, for a derivation
of the Legendre cquation from the Laplace equation.



