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Lecture (11) 
Semi-Lagrangian Advection Scheme (Part2) 

11.1 Numerical Domain of Dependence  

For the Eulerian Leapfrog Scheme, the value Yp,q at time 𝑘∆𝑡 and position 𝑝∆𝑥 depends 

on values within the area depicted by asterisks (See Fig 11.1). 

Values outside this region have no influence on Yp,q. 

Each computed value Yp,q depends on previously computed values and on the initial 

conditions. The set of points which influence the value Yp,q is called the numerical 

domain of dependence of Yp,q. 

 

 

 

 

 

 

Figure 11.1 Numerical domain of dependence 

 

It is clear on physical grounds that if the parcel of fluid arriving at point 𝑝∆𝑥 at time 

𝑞∆𝑡 originates outside the numerical domain of dependence, the numerical scheme 

cannot yield an accurate result: the necessary information is not available to the 

scheme. 

A necessary condition for avoidance of this phenomenon is that the numerical domain 

of dependence should include the physical trajectory. This condition is fulfilled by the 

semi-Lagrangian scheme. 
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11.2 Parcel coming from outside domain of dependence 

The line of bullets (•) represents a parcel trajectory. The value everywhere on the 

trajectory is Yp,q (See Figure 11.2). 
Since the parcel originates outside the numerical domain of dependence, the Eulerian 

scheme cannot model it correctly. The central idea of the Lagrangian scheme is to 

represent the physical trajectory of the fluid parcel. 
  

 

 

 

 

 

 

 

 
 

Figure 14.2 Parcel trajectory 

 

We consider a parcel arriving at grid point m∆x at the new time (𝑞 + 1)∆𝑡 and ask: 

Where has it come from? 

The departure point will not normally be a grid point. Therefore, the value at the 

departure point must be calculated by interpolation from surrounding points. But this 

interpolation ensures that the trajectory falls within the numerical domain of 

dependence. We will show that this leads to a numerically stable scheme. 
 

11.3 Interpolation Using Surrounding Points   
The line of circles (◦) represents a parcel trajectory (𝑡ℎ𝑒 𝑠𝑝𝑒𝑒𝑑 𝑖𝑠:  𝑐 =  

5∆𝑥  

3∆𝑡
).  

At time (𝑞 − 1)∆𝑡 the parcel is at (•), which is not a grid point (See Figure 11.3). 
The value at the departure point is obtained by interpolation from surrounding points. 

Thus we ensure that, even though 𝐶𝐹𝐿 > 1 , the physical trajectory is within the 

domain of numerical dependence. 
 

 

 
 

 

 

Figure 11.3 Parcel trajectory 
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The advection equation in Lagrangian form may be written 
𝑑𝑌

𝑑𝑡
= 0. 

From a physical aspect, this equation says that the value of Y is constant for a fluid 

parcel. Applying the equation over the time interval [𝑞∆𝑡, (𝑞 + 1)∆𝑡], we get: 
 

(
𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑌 𝑎𝑡 𝑝𝑜𝑖𝑛𝑡 

𝑝∆𝑥 𝑎𝑡 𝑡𝑖𝑚𝑒 (𝑞 + 1)∆𝑡
) = (

𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝑌 𝑎𝑡 𝑑𝑒𝑝𝑎𝑟𝑡𝑢𝑟𝑒
 𝑝𝑜𝑖𝑛𝑡 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑞∆𝑡

) 

 

Or                                                  𝑌𝑝,𝑞+1 = 𝑌•,𝑞  

where 𝑌•,𝑞 is the value at the departure point, which is normally not a grid point. 
 

The distance travelled in time ∆𝑡 is 𝑠 = 𝑐∆𝑡.  

We define the integer and fractional parts of s as follows: 

𝛾 = 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑠                   

𝛼 = 𝑠 − 𝛾 = 𝐹𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑎𝑙 𝑝𝑎𝑟𝑡 𝑜𝑓 𝑠          

Note that, by definition, 0 ≤ 𝛼 < 1. So, the departure point falls between the grid 

points 𝑝 − 𝛾 − 1 and 𝑝 − 𝛾.  

In the figure (11.4),  𝛾 = 1 and 𝛼 ≈ 2/3   (i.e. 𝑠 = 1
2

3
)  

A linear interpolation gives: 

𝑌•,𝑞 = 𝛼𝑌𝑝−𝛾−1,𝑞 + (1 − 𝛼)𝑌𝑝−𝛾,𝑞          𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 

 

 

 

 

 

 

Figure 11.4 Parcel trajectory 
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11.4 Numerical Stability of the Scheme     

The discrete equation may be written 
𝑌𝑝,𝑞+1 = 𝛼𝑌𝑝−𝛾−1,𝑞 + (1 − 𝛼)𝑌𝑝−𝛾,𝑞              (1) 

Let us look for a solution of the form: 

𝑌𝑝,𝑞 = a𝐴𝑞𝑒𝑥𝑝(𝑖𝑘𝑝∆𝑥)                       (2) 

Substituting equation (2) into equation (1), we get: 
 

a𝐴𝑞+1𝑒𝑥𝑝(𝑖𝑘𝑝∆𝑥) = a𝛼𝐴𝑞 exp[𝑖𝑘(𝑝 − 𝛾 − 1)∆𝑥] + (1 − 𝛼)a𝐴𝑞 exp[𝑖𝑘(𝑝 − 𝛾)∆𝑥] 

we can write it as: 

a𝐴1𝐴𝑞𝑒𝑥𝑝(𝑖𝑘𝑝∆𝑥) = a𝛼𝐴𝑞 exp[𝑖𝑘𝑝∆𝑥] exp[𝑖𝑘(−𝛾 − 1)∆𝑥] + 

(1 − 𝛼)a 𝐴𝑞 exp[𝑖𝑘𝑝∆𝑥] exp[𝑖𝑘(−𝛾)∆𝑥] 

Removing the common term  a𝐴𝑞𝑒𝑥𝑝(𝑖𝑘𝑝∆𝑥), we get  
𝐴 = 𝛼 exp[𝑖𝑘(−𝛾 − 1)∆𝑥)] + (1 − 𝛼)exp [𝑖𝑘(−𝛾)∆𝑥] 

We can write this as 

  𝐴 = 𝛼 exp (−𝑖𝑘𝛾∆𝑥). exp (−𝑖𝑘∆𝑥) + (1 − 𝛼)exp (−𝑖𝑘𝛾∆𝑥) 

  𝐴 = exp(−𝑖𝑘𝛾∆𝑥) ∙ [(1 − 𝛼) + 𝛼 exp(−𝑖𝑘∆𝑥)] 

Now consider the squared modulus of A (from the rules of complex numbers): 

|𝐴|2 = |𝑒𝑥𝑝(−𝑖𝑘𝛾∆𝑥)|2. |(1 − 𝛼) + 𝛼 𝑒𝑥𝑝(−𝑖𝑘∆𝑥)|2       
 

  =  | (1 − 𝛼) + 𝛼 𝑐𝑜𝑠 𝑘∆𝑥 − 𝑖𝛼 𝑠𝑖𝑛 𝑘∆𝑥|2    

  =  [ (1 − 𝛼) + 𝛼 𝑐𝑜𝑠 𝑘∆𝑥]2 + [−𝛼 𝑠𝑖𝑛 𝑘∆𝑥]2     

  =  (1 − 𝛼)2 + 2(1 − 𝛼)𝛼 𝑐𝑜𝑠 𝑘∆𝑥 + 𝛼2 𝑐𝑜𝑠2 𝑘∆𝑥 + 𝛼2 𝑠𝑖𝑛2 𝑘∆𝑥   

  =  1 − 2𝛼 + 𝛼2 + 2𝛼 𝑐𝑜𝑠 𝑘∆𝑥 − 2𝛼2 𝑐𝑜𝑠 𝑘∆𝑥 + 𝛼2  

  =  1 − 2𝛼 + 2𝛼2 + 2𝛼 𝑐𝑜𝑠 𝑘∆𝑥 − 2𝛼2 𝑐𝑜𝑠 𝑘∆𝑥 

  =  1 − 2𝛼 + 2𝛼2 + 2𝛼 𝑐𝑜𝑠 𝑘∆𝑥 (1 − 𝛼) 

  =  1 − 2𝛼(1 − 𝛼) + 2𝛼 cos 𝑘∆𝑥 (1 − 𝛼)   

   = 1 − 2𝛼(1 − 𝛼)[1 −  𝑐𝑜𝑠 𝑘∆𝑥]     

We note that 0 ≤ (1 − 𝑐𝑜𝑠 𝑘∆𝑥) ≤ 2       (Why?) 

Taking the largest value of   1 − 𝑐𝑜𝑠 𝑘∆𝑥     (i.e. 2) gives: 

|𝐴|2 = 1 − 4𝛼(1 − 𝛼) = (1 −  2𝛼)2 < 1    𝑏𝑒𝑐𝑎𝑢𝑠𝑒  𝛼 < 1        

Taking the smallest value of  1 −  𝑐𝑜𝑠 𝑘∆𝑥  gives |𝐴|2 = 1          

In either case, |𝐴|2 = 1  , so there is numerical stability. 

Note: Be careful 
 a is different from α 

𝑒𝑀+𝑁 = 𝑒𝑀. 𝑒𝑁 

= 1    (Why?) 

Note: magnitude of a 

complex number /M+iN/ is 

√𝑀2 + 𝑁2 

= 𝛼2    (Why?) 


