Numerical Weather Prediction 1 /4™ Year/ Dept. Atm. Sci. Lecture (11) Dr. Thaer Obaid Roomi

Lecture (11)
Semi-Lagrangian Advection Scheme (Part2)

11.1 Numerical Domain of Dependence

For the Eulerian Leapfrog Scheme, the value Y, 4 at time kAt and position pAx depends
on values within the area depicted by asterisks (See Fig 11.1).

Values outside this region have no influence on Y, .

Each computed value Y, 4 depends on previously computed values and on the initial
conditions. The set of points which influence the value Y, is called the numerical

domain of dependence of Y.
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Figure 11.1 Numerical domain of dependence

It is clear on physical grounds that if the parcel of fluid arriving at point pAx at time
gAt originates outside the numerical domain of dependence, the numerical scheme
cannot yield an accurate result: the necessary information is not available to the
scheme.

A necessary condition for avoidance of this phenomenon is that the numerical domain
of dependence should include the physical trajectory. This condition is fulfilled by the
semi-Lagrangian scheme.
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11.2 Parcel coming from outside domain of dependence

The line of bullets (*) represents a parcel trajectory. The value everywhere on the
trajectory is Y, 4 (See Figure 11.2).

Since the parcel originates outside the numerical domain of dependence, the Eulerian
scheme cannot model it correctly. The central idea of the Lagrangian scheme is to
represent the physical trajectory of the fluid parcel.
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Figure 14.2 Parcel trajectory

We consider a parcel arriving at grid point mAx at the new time (q + 1)At and ask:
Where has it come from?

The departure point will not normally be a grid point. Therefore, the value at the
departure point must be calculated by interpolation from surrounding points. But this
interpolation ensures that the trajectory falls within the numerical domain of
dependence. We will show that this leads to a numerically stable scheme.

11.3 Interpolation Using Surrounding Points

The line of circles (°) represents a parcel trajectory (the speed is: ¢ = SgATxt).

At time (q — 1)At the parcel is at (¢), which is not a grid point (See Figure 11.3).

The value at the departure point is obtained by interpolation from surrounding points.
Thus we ensure that, even though CFL > 1 , the physical trajectory is within the
domain of numerical dependence.

FToTTTTTo FTTTTTTTo FToTTTTTo FToTTTTTo FooT T Or-mmmmmmes . d

| | | | | o 3 |

| | | | (oY - | |
et Fomm-- - oo Rl +++ @ bbb - - - - R 1q-1
| | | o, ) | | |

| | o | | |

B et bbbt Ot -= S === - - Rt O bt B Rt 1q-2
p-5 p-4 p-3 p-2 p-1 p p+1

Figure 11.3 Parcel trajectory
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The advection equation in Lagrangian form may be written % = 0.
From a physical aspect, this equation says that the value of Y is constant for a fluid
parcel. Applying the equation over the time interval [qAt, (q + 1)At], we get:

( Value of Y at point )

(Value of Y at departure)
pAx at time (q + 1)At

point at time qAt

Or Yoar1 =Yoq

where Y, , is the value at the departure point, which is normally not a grid point.

The distance travelled in time At is s = cAt.

We define the integer and fractional parts of s as follows:

y = Integer part of s

a = s —y = Fractional part of s

Note that, by definition, 0 < a < 1. So, the departure point falls between the grid
pointsp—y —1landp —vy.

In the figure (11.4), y=1anda = 2/3 (i.e.s = 1%)

A linear interpolation gives:

Yog=aY, y 1+ (A —a)Y,y, equation of interpolation
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Figure 11.4 Parcel trajectory
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11.4 Numerical Stability of the Scheme

The discrete equation may be written

Voa+1 = a¥py_1q4+ (1= )Y,y q (1)
Let us look for a solution of the form:

Y, q = adgexp(ikpAx) (2)
Substituting equation (2) into equation (1), we get:
aAg1exp(ikpAx) = aaA, explik(p —y — 1)Ax] + (1 — a)ad, exp[ik(p — y)Ax]
we can write it as:
aAiAgexp(ikpAx) = aaA, explikpAx] explik(—y — 1)Ax] +
(1 —a)a A, explikpAx] explik(—y)Ax]

Removing the common term aA exp(ikpAx), we get

A = aexplik(—y — 1)Ax)] + (1 — a)exp[ik(—y)Ax]

We can write this as
A = aexp (—ikyAx).exp (—ikAx) + (1 — a)exp(—ikyAx)

A =exp(—ikyAx) - [(1 — a) + a exp(—ikAx)]
Now consider the squared modulus of A (from the rules of complex numbers):

AP = lexp(~ikyA0)|. (1 — @) + @ exp(~ikax)

= | (1 —a) + a cos kAx — ia sin kAx|?
= [ (1 —a) + a cos kAx]? + [—a sin kAx]?
= (1—-a)?>+2(1 —a)a cos kAx + a? cos? kAx + a? sin? kAx
= 1—2a+ a? + 2a cos kAx — 2a? cos kAx + a?
= 1—2a+ 2a?+ 2a cos kAx — 2a? cos kAx
= 1—2a+ 2a*+ 2a cos kAx (1 — a)
= 1—-2a(1 —a)+ 2acoskAx(1—a)
=1—-2a(1—a)[1l — cos kAx]
Wenotethat 0 < (1 —cos kAx) <2  (Why?)
Taking the largest value of 1 — cos kAx (i.e. 2) gives:
[AI?=1—4a(l—a)=(1- 2a)> <1 because a <1
Taking the smallest value of 1 — cos kAx gives |A]> =1

Note: Be careful
a is different from a

Note: magnitude of a
complex number /M+iN/ is

JM? + N2

In either case, |A|?> = 1 , so there is numerical stability.
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