15. Continuity and Compactness

(15.1) Theorem: Let $(X, d_1), (Y, d_2)$ are metric spaces and $f: X \to Y$ is a continuous function. If X is a compact set, then f(X) is a compact set in Y.

Proof: let $F = \{G_{\lambda}\}_{{\lambda} \in \Lambda}$ is an open cover of f(X) in Y.

$$\Rightarrow f(X) \subseteq \bigcup_{\lambda \in \Lambda} G_{\lambda}, G_{\lambda} \in \tau_{\lambda} \forall \lambda \in \Lambda$$

$$X\subseteq f^{-1}(f(X))\subseteq f^{-1}(\bigcup_{\lambda\in\Lambda}G_\lambda)=\bigcup_{\lambda\in\Lambda}f^{-1}(G_\lambda)$$

Since
$$\bigcup_{\lambda \in \Lambda} f^{-1}(G_{\lambda}) \subseteq X \Longrightarrow X = \bigcup_{\lambda \in \Lambda} f^{-1}(G_{\lambda})$$

Since f is a continuous $\Longrightarrow f^{-1}(G_{\lambda})$ is an open set in $X \forall \lambda \in \Lambda$

 $\{f^{-1}(G_{\lambda})\}$ is an open cover of X

Since X is a compact space $\Longrightarrow \exists \lambda_1, \lambda_2, ..., \lambda_n \in \Lambda \ni X = \bigcup_{i=1}^n f^{-1}(G_{\lambda})$

$$\Rightarrow X = f^{-1}(\bigcup_{i=1}^n G_{\lambda}) \Rightarrow f(X) = f(f^{-1}(\bigcup_{i=1}^n G_{\lambda})) \subseteq \bigcup_{i=1}^n G_{\lambda}$$

 $\implies f(X)$ is a compact set in Y.

(15.2) <u>Corollary</u>: Let $(X, d_1), (Y, d_2)$ are metric spaces and $f: X \to Y$ is a continuous function. If A is a compact set in X, then f(A) is a compact set in Y.

(15.3) Example: Let (\mathcal{R}, d_u) is usual metric space and $f: \mathcal{R} \to \mathcal{R}$ is defined as $f(x) = 2 \ \forall x \in \mathcal{R}$.

We note that f is a continuous, since f is a constant and $A = \{1,2,3\}$ is a compact in \mathcal{R} , since A is a finite, but $f^{-1}(A) = \mathcal{R}$ does not compact.

(15.4) Theorem: Let (X, d_1) , (Y, d_2) are metric spaces $\ni X \cong Y$, then X is a compact space $\iff Y$ is a compact space.

Proof: since $X \cong Y \Longrightarrow \exists f: X \to Y$.

Let X is a compact space, since f is a continuous $\Rightarrow f(X)$ is a compact in Y.

Since f is a bijective $\Longrightarrow f(X) = Y \Longrightarrow Y$ is a compact space.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

Now, let *Y* is a compact space

Since $f^{-1}: Y \to X$ is a continuous $\Longrightarrow f^{-1}(Y) = X$ is a compact.

(15.5) **Theorem**: Let (X, d) is a compact space and $f: X \to \mathcal{R}$ is a continuous function, then

- 1. *f* is a bounded.
- 2. If $\alpha = \inf \{f(x): x \in X\}$, $\beta = \sup \{f(x): x \in X\}$, then $\exists a, b \in X \ni f(a) = \alpha$, $f(b) = \beta$.

Proof: (1) since X is a compact space and f is a continuous $\Rightarrow f(X)$ is a compact set in \mathcal{R} .

Since every compact set in \mathcal{R} is a closed and bounded $\Rightarrow f(X)$ is a bounded.

- (2) since f(X) is a bounded $\Rightarrow \exists \alpha, \beta \in \mathcal{R}$ and since f(X) is a closed $\Rightarrow \alpha, \beta \in f(X)$
- Put $a \in f^{-1}(\{\alpha\}), b \in f^{-1}(\{\beta\}) \Longrightarrow f(a) = \alpha, f(b) = \beta$.
- (15.6) Theorem: Let $(X, d_1), (Y, d_2)$ are a metric spaces and $f: X \to Y$ is a continuous function. If X is a compact space, then f is an uniform continuous.
- (15.7) Corollary: Let (\mathcal{R}, d_u) is usual metric space. If $f: [a, b] \to \mathcal{R}$ is a continuous function, then f is an uniform continuous.