12. Continuity

(12.1) **<u>Definition</u>**: If (X, d_1) , (Y, d_2) be metric spaces. We said that a function $f: X \to Y$ is continuous at $x_0 \in X$, if \forall open set $U \subseteq Y$ contains $f(x_0)$, \exists an open set $V \subseteq X$ contains $x_0 \ni f(V) \subset U$.

(12.2) Theorem: Let $(X, d_1), (Y, d_2)$ be metric spaces, then a function $f: X \to Y$ be continuous at point $x_0 \in X \Leftrightarrow \forall$ open ball $B_{\varepsilon}(f(x_0))$ in $Y \ni$ an open ball $B_{\delta}(x_0)$ in $X \ni f(B_{\delta}(x_0)) \subset B_{\varepsilon}(f(x_0))$.

This means, $\forall \varepsilon > 0 \exists \delta > 0 \ni \forall x \in X \Longrightarrow d_1(x, x_0) < \delta \Longrightarrow d_2(f(x), f(x_0)) < \varepsilon$.

(12.3) **Example:** Let (\mathcal{R}, d_u) be usual metric space. Prove that a function $f: \mathcal{R} \to \mathcal{R}$ defined by $f(x) = x^2, x \in \mathcal{R}$ is a continuous.

Solution: let $x_0 \in \mathcal{R}$, $\varepsilon > 0$.

$$|f(x) - f(x_0)| = |x^2 - x_0|^2 = |(x - x_0)(x + x_0)| = |x - x_0||x + x_0|$$

Since $|x + x_0| \le |x| + |x_0|$

So,
$$|f(x) - f(x_0)| \le |x - x_0|(|x| + |x_0|) \dots (1)$$

Since
$$x = (x - x_0) + x_0 \Longrightarrow |x| = |(x - x_0) + x_0| \Longrightarrow |x| \le |x - x_0| + |x_0|$$

$$\Rightarrow |x| - |x_0| \le |x - x_0|$$

If
$$|x - x_0| < 1 \Rightarrow |x| - |x_0| < 1 \Rightarrow |x| < 1 + |x_0| \dots (2)$$

From (1), (2), we get

$$|f(x) - f(x_0)| \le |x - x_0|(1 + 2|x_0|) \dots (3)$$

Take $\delta = \min \{1, \frac{\varepsilon}{1 + 2|x_0|}\}$

Now, let
$$x \in \mathcal{R} \ni |x - x_0| < \delta \Longrightarrow |x - x_0| < \frac{\varepsilon}{1 + 2|x_0|}$$
 and $|x - x_0| < 1$

$$\Rightarrow |x - x_0| < (1 + 2|x_0|) < \varepsilon$$

From (3), we get

$$|f(x) - f(x_0)| < \varepsilon$$

 \Rightarrow f is a continuous at $x_0 \Rightarrow$ f is a continuous.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

(12.4) Example: Let (\mathcal{R}, d_u) be usual metric space. Prove that a function $f: \mathcal{R} \to \mathcal{R}$ defined by $f(x) = \frac{1}{x}$, $x \in \mathcal{R}^+$ is a continuous at x = 2.

Solution: let
$$\varepsilon > 0$$
, $|f(x) - f(2)| = \left| \frac{1}{x} - \frac{1}{2} \right| = \left| \frac{2-x}{2x} \right| = \frac{|2-x|}{2x}$ (since $x > 0$)

If
$$|x - 2| < 1 \Rightarrow -1 < x - 2 < 1 \Rightarrow 1 < x < 3 \Rightarrow x > 1 \Rightarrow \frac{1}{x} < 1$$

$$\Rightarrow \frac{|2-x|}{2x} < \frac{1}{2}|2-x|$$

Choose $\delta = \min \{1, 2\varepsilon\}$

Now, let $x \in \mathcal{R}^+ \ni |x-2| < \delta \Longrightarrow |x-2| < 2\varepsilon$ and |x-2| < 1

$$\Rightarrow \frac{1}{2}|x-2| < \varepsilon$$

$$|f(x) - f(2)| < \frac{1}{2}|x - 2| < \varepsilon$$

 \Rightarrow f is a continuous at x = 2.

 $(12.5) \underline{\textbf{Example:}} \text{ Let } (\mathcal{R}, d_u) \text{ be usual metric space. Prove that a function } f \colon \mathcal{R} \to \mathcal{R}$ defined by $f(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$, is a continuous on $\mathcal{R} \setminus \{0\}$.

- (12.6) Theorem: Let $(X, d_1), (Y, d_2)$ be metric spaces, and $f: X \to Y$ a function, then the following properties are equivalent:
 - 1. A function f is a continuous.
 - 2. If an open set $G \subset Y$, then $f^{-1}(G)$ be an open set in X.
 - 3. If a closed set $H \subset Y$, then $f^{-1}(H)$ be a closed set in X.
 - 4. $f(\bar{A}) \subseteq \overline{f(A)} \ \forall A \subset X$.
 - 5. $\overline{f^{-1}(B)} \subseteq f^{-1}(\overline{B}) \ \forall B \subset Y$.
 - 6. $f^{-1}(B^{\circ}) \subseteq (f^{-1}(B))^{\circ}$.
- (12.7) Theorem: Let $(X, d_1), (Y, d_2), (Z, d_3)$ be metric spaces, and $f: X \to Y, g: Y \to Z$ be a continuous functions, then a function $g \circ f: X \to Z$ be a continuous function.

Proof: let G is an open set in Z.

Since a function $g: Y \to Z$ is a continuous $\Longrightarrow g^{-1}(G)$ is an open set in Y.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

Since a function $f: X \to Y$ is a continuous $\Longrightarrow f^{-1}(g^{-1}(G))$ is an open set in X, but $f^{-1}(g^{-1}(G)) = (f^{-1} \circ g^{-1})(G) = (g \circ f)^{-1}(G)$

 \Rightarrow $(g \circ f)^{-1}(G)$ is an open set in X

 \Rightarrow $g \circ f$ be a continuous function.

(12.8) **Example:** Let (X, d_1) , (Y, d_2) be metric spaces, and $f: X \to Y$ a function. Prove that

- 1. If *f* is a constant, then *f* is a continuous.
- 2. If (X, d_1) be discrete, then f is a continuous.
- 3. If (X, d_1) be indiscrete, then f is a continuous.

Solution: (1) since f is a constant, then $\exists b \in Y \ni f(x) = b \ \forall x \in X$.

Let G be an open set in Y.

$$f^{-1}(G) = \begin{cases} \emptyset, b \notin G \\ X, b \in G \end{cases}$$

Since \emptyset , X be an open sets $\Longrightarrow f^{-1}(G)$ be an open set in $X \Longrightarrow f$ is a continuous.

Sequentially Continuity

(12.9) **<u>Definition</u>**: Let $(X, d_1), (Y, d_2)$ be metric spaces. We said a function $f: X \to Y$ be sequentially continuity at $x \in X$, if every sequence $\{x_n\}$ in $X \ni x_n \to x_0 \Longrightarrow f(x_n) \to f(x_0)$ in Y.

(12.10) Theorem: Let $(X, d_1), (Y, d_2)$ be metric spaces, then a function $f: X \to Y$ be a continuous at $x_0 \in X \iff f$ be sequentially continuity at $x_0 \in X$.

 $(12.11) \underline{\textbf{Example:}} \text{ Let } (\mathcal{R}, d_u) \text{ be usual metric space. Prove that a function } f \colon \mathcal{R} \to \mathcal{R}$ defined by $f(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$, is a discontinuous at x = 0.

Solution: take $x_n = \frac{1}{n} \Longrightarrow \{x_n\}$ in \mathcal{R} and $x_n \to 0$,

since
$$\frac{1}{n} > 0 \ \forall n \in \mathbb{Z}^+ \Longrightarrow f\left(\frac{1}{n}\right) = 1 \Longrightarrow f(x_n) = 1$$

$$\Rightarrow f(x_n) \to 1 \Rightarrow f(x_n) \not\to f(0) = 0$$

 \Rightarrow f is a discontinuous at x = 0.