8. Metric Topologies

- (8.1) **Definition**: Let (X, d) be a metric space, $x_0 \in X$ and let $r \in \mathbb{R}^+$. The set $\{x \in X : d(x, x_0) < r\}$ is called an open ball in X, such x_0 is a center of a ball and r is radius of a ball and denoted by $B_r(x_0) = \{x \in X : d(x, x_0) < r\}$.
- (8.2) **Definition**: A closed ball with center x_0 and radius r is denoted by $\overline{B_r}(x_0) = \{x \in X : d(x, x_0) \le r\}$.
- (8.3) **Example**: In usual metric space, we have
 - 1. Every open ball contains an open interval.
 - 2. Every closed ball contains a closed interval.

Solution: (1) $d(x, y) = |x - y| \ \forall x, y \in \mathcal{R}$.

Let $x_0 \in \mathcal{R}$, r > 0

$$B_r(x_0) = \{x \in X : d(x, x_0) < r\} = \{x \in X : |x - x_0| < r\}$$

$$= \{x \in X: -r < x - x_0 < r\} = \{x \in X: x_0 - r < x < x_0 + r\} = (x_0 - r, x_0 + r).$$

(8.4) **Example**: Let X = [0,1] and a function $d: X \times X \to \mathcal{R}$ defined by $d(x,y) = |x-y| \ \forall x,y \in X$. Discuss $B_1\left(\frac{1}{2}\right)$ and $B_{\frac{1}{4}}(0)$.

Solution:
$$B_1\left(\frac{1}{2}\right) = \left\{x \in X : d\left(x, \frac{1}{2}\right) < 1\right\} = \left\{x \in X : \left|x - \frac{1}{2}\right| < 1\right\}$$

$$= \left\{ x \in X : \frac{-1}{2} < x < \frac{3}{2} \right\} = \left\{ x \in X : 0 \le x \le 1 \right\} = X.$$

- (8.5) **Example**: Discuss an open balls with the center (0,0) and radius 1 for following metric functions:
 - 1. $d_1(x,y) = \sqrt{(x_1 y_1)^2 + (x_2 y_2)^2} \quad \forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.
 - 2. $d_2(x,y) = |x_1 y_1| + |x_2 y_2| \quad \forall x = (x_1, x_2), y = (y_1, y_2) \in \mathbb{R}^2$.
 - 3. $d_3(x,y) = \max\{|x_1 y_1|, |x_2 y_2|\}\ \forall x = (x_1, x_2), y = (y_1, y_2) \in \mathcal{R}^2$.

Solution: (1) r = 1, $(x_0, y_0) = (0,0)$

$$B_r(x_0) = \{x \in X : d(x, x_0) < r\} = \{(x_1, x_2) \in \mathcal{R}^2 : x_1^2 + x_2^2 < 1\}.$$

- (8.6) **Example**: Let (X, d) be discrete metric space and let $x_0 \in X, r \in \mathbb{R}^+$, then
 - 1. If r > 1, then $B_r(x_0) = X$.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

2. If $r \le 1$, then $B_r(x_0) = \{x_0\}$.

Solution: (1) Let
$$x \in X$$
, since $d(x, x_0) = \begin{cases} 0, x = x_0 \\ 1, x \neq x_0 \end{cases}$

$$\implies d(x, x_0) < r \implies x \in B_r(x_0) \implies X \subseteq B_r(x_0)$$
, but $B_r(x_0) \subseteq X \implies B_r(x_0) = X$.

- (8.7) **Definition**: Let (X, d) be a metric space and $A \subseteq X$. We said that A is an open set in X, if $\forall x \in X \exists r > 0 \ni B_r(x) \subset A$.
- (8.8) **<u>Definition</u>**: We say that A is a closed set in X, if A^c is an open set in X.
- (8.9)**Theorem**: In any metric space, we have
 - 1. Every open ball is an open set.
 - 2. Every closed ball is a closed set.

Proof: (1) Let (X, d) a metric space and $x_0 \in X, r > 0$.

We must prove that $B_r(x_0)$ is an open set.

Let
$$x \in B_r(x_0) \Longrightarrow d(x, x_0) < r \Longrightarrow r - d(x, x_0) > 0$$

Put $r - d(x, x_0) = r_1 \Longrightarrow r_1 > 0$, we must prove $B_{r_1}(x_0) \subseteq B_r(x_0)$.

Let
$$y \in B_{r_1}(x_0) \implies d(y, x_0) < r_1 \implies d(y, x_0) < r - d(y, x_0) < r$$

$$\Rightarrow d(y,x) + d(y,x_0) < r$$

Since
$$d(y, x_0) \le d(y, x) + d(x, x_0) \Rightarrow d(y, x_0) < r \Rightarrow y \in B_r(x_0)$$

 \implies $B_r(x_0)$ is an open set.

- (8.10)Corollary: In usual metric space (\mathcal{R}, d_u) , we have
 - 1. Every an open interval is an open set.
 - 2. Every a closed interval is a closed set.
- (8.11)Theorem: Let (X, d) is a metric space and $A \subseteq X$, then A is an open iff A equals to union of an open balls.

Proof: If $A = \emptyset$, the proof will end.

If $A \neq \emptyset$, let A is an open set in X.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

$$\Rightarrow \forall x \in A \ \exists r_x > 0 \ni B_{r_x}(x) \subseteq A \Rightarrow A \subseteq \bigcup_{x \in A} B_{r_x}(x) \subset A$$

 $\Rightarrow A = \bigcup_{x \in A} B_{r_x}(x) \Rightarrow A$ equals to union of an open balls.

 \Leftarrow) let A equals to union of an open balls.

Since each open ball is an open set \Rightarrow A equals to union of an open set.

- \Rightarrow A is an open set.
- (8.12) **Example**: Prove that, every subset of discrete metric space is an open and closed.

Solution: Let (X, d) is discrete metric space and $A \subseteq X$. If $A = \emptyset$, the proof will end.

If $A \neq \emptyset$, let $x \in A$, take $r = \frac{1}{2}$.

$$B_r(x) = \left\{ y \in X : d(y, x) < \frac{1}{2} \right\} = \left\{ y \in X : d(y, x) = 0 \right\} = \left\{ y \in X : y = x \right\} = \left\{ x \right\} \subset A$$

 \Rightarrow A is an open set.

Let $B \subseteq X \Longrightarrow B^c \subseteq X \Longrightarrow B^c$ is an open set in $X \Longrightarrow B$ is a closed set.

- (8.13)**Theorem**: Let (X, d) be a metric space.
 - 1. Each of \emptyset , X be an open sets in X.
 - 2. If $A_1, A_2, ..., A_n$ be an open sets in X, then $\bigcap_{i=1}^n A_i$ be an open set in X.
 - 3. If $A_{\lambda} \forall \lambda \in \Lambda$ is an open set in X, then $\bigcup_{\lambda \in \Lambda} A_{\lambda}$ be an open set in X.

Proof: (1) suppose that \emptyset be a non- open set

 $\Rightarrow \exists x \in \emptyset \ni B_r(x) \subseteq \emptyset \ \forall r > 0$, this is impossible, since \emptyset does not contain on element $\Rightarrow \emptyset$ is an open set.

Since $B_r(x) \subseteq X \ \forall x \in X, r > 0 \Longrightarrow X$ be an open set.

- (8.14) **Example**: Let (\mathcal{R}, d_u) be usual metric space, and let $A_n = \left(\frac{-1}{n}, \frac{1}{n}\right) \forall n \in \mathbb{Z}^+$, we note that A_n be an open set $\forall n \in \mathbb{Z}^+$ and $\bigcap_{i=1}^{\infty} A_n = \{0\}$ be a non- open set.
- (8.15)Theorem: Let (X, d) be a metric space.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

- 1. Each of \emptyset , X be a closed sets in X.
- 2. If $A_1, A_2, ..., A_n$ be a closed sets in X, then $\bigcup_{i=1}^n A_i$ be a closed set in X.
- 3. If $A_{\lambda} \forall \lambda \in \Lambda$ is a closed set in X, then $\bigcap_{\lambda \in \Lambda} A_{\lambda}$ be a closed set in X.

Proof: (1) since $\emptyset^c = X$ and X is an open set in $X \Longrightarrow \emptyset^c$ is an open set in X

 \Rightarrow Ø is a closed set in X

Since $X^c = \emptyset$ and \emptyset is an open set in $X \Longrightarrow X^c$ is an open set in X

 \implies X is a closed set in X.

(8.16) **Example**: Let (\mathcal{R}, d_u) be usual metric space, and let $A_n = \left[\frac{1}{n}, 1\right] \forall n \in \mathbb{Z}^+$, we note that A_n be a closed set $\forall n \in \mathbb{Z}^+$ and $\bigcup_{i=1}^{\infty} A_n = (0,1]$ be a non- closed set.

(8.17) **Notes**:

- 1. The point $x_0 \in A' \iff \forall$ open ball with center x_0 contains on infinite number of points in A.
- 2. $\bar{A} = \{x \in X : d(x, A) = 0\}.$
- (8.18)Theorem: In any metric space (X, d) be every single set is a closed, \Rightarrow every finite set be a closed.