Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

4. Infinite Series

Let $\{a_n\}$ a real sequence and $S_1 = a_1, S_2 = a_1 + a_2, S_3 = a_1 + a_2 + a_3, \dots$, $S_n = a_1 + a_2 + \dots + a_n$. A sequence of partial sums $\{S_n\}$ is called an infinite series and its denoted by $\sum_{n=1}^{\infty} a_n$. We say that a_1, a_2, a_3, \dots be a terms of infinite series $\sum_{n=1}^{\infty} a_n$ and called of numbers S_1, S_2, S_3, \dots be a partial sums of infinite series $\sum_{n=1}^{\infty} a_n$.

- (4.1) **<u>Definition</u>**: Let $\{a_n\}$ be a real sequence and $S_n = \sum_{k=1}^n a_k$, we called of $\{S_n\}$ is an infinite series and denoted by $\sum_{n=1}^{\infty} a_n$.
- (4.2) **Definition**: We say that $\sum_{n=1}^{\infty} a_n$ is a convergent, if $\{S_n\}$ is a converge to S, this means $(\lim_{n\to\infty} S_n = S)$, S is called infinite series sum $\sum_{n=1}^{\infty} a_n$, this means $S = \sum_{n=1}^{\infty} a_n$. If $\{S_n\}$ is a divergent (i.e. $\lim_{n\to\infty} S_n$ does not exist).
- (4.3) Example: Does $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ convergent?

$$a_n = \frac{1}{n(n+1)}$$
, $S_n = \sum_{k=1}^n a_k = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n (\frac{1}{k} - \frac{1}{k+1}) = 1 - \frac{1}{n+1} \Longrightarrow S_n \to 1 \Longrightarrow \sum_{n=1}^\infty \frac{1}{n(n+1)} = 1$ and then $\sum_{n=1}^\infty \frac{1}{n(n+1)}$ is a convergent.

- (4.4) **Theorem**: (some special infinite series)
 - 1. $\sum_{n=1}^{\infty} ar^{n-1} \ni a \neq 0, r \neq 0$ is called geometric series and r is a basis of series. $\sum_{n=1}^{\infty} ar^{n-1}$ is a convergent, if $|r| < 1, S = \frac{a}{1-r}$ and otherwise its be a divergent.
 - 2. $\sum_{n=1}^{\infty} \frac{1}{n}$ is called a harmonic series and it's a divergent.

<u>Proof:</u> (1) if $r = 1 \Rightarrow S_n = a + a + \dots + a = na \Rightarrow \{na\}$ does not convergent, if it's a convergent, so it's a bounded, this means $\exists M \in \mathcal{R}^+ \ni |na| \leq M \ \forall n \in \mathbb{Z}^+ \Rightarrow n|a| \leq M \Rightarrow n \leq \frac{M}{|a|} \ \forall n \in \mathbb{Z}^+$, but this a contradiction (Archimedes property) $\Rightarrow \sum_{n=1}^{\infty} ar^{n-1}$ is a divergent.

(2)
$$a_n = \frac{1}{n}$$
, $S_n = \sum_{k=1}^n \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$, $S_{2n} = \sum_{k=1}^{2n} \frac{1}{k} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots + \frac{1}{n} + \dots + \frac{1}{2n} \Longrightarrow S_{2n} - S_n \ge \frac{1}{2} \ \forall n \in \mathbb{Z}^+$, i.e. if $m = 2n, n \ge 1 \Longrightarrow |S_m - S_n| \ge \frac{1}{2} \forall n, m \in \mathbb{Z}^+ \Longrightarrow \{S_n\}$ does not Cauchy sequence $\Longrightarrow \{S_n\}$ does not convergent $\Longrightarrow \sum_{n=1}^{\infty} \frac{1}{n}$ is a divergent.

Prof. Dr. Najm Abdulzahra Makhrib Al-Seraji, Lectures in Mathematical Analysis (1) [2021-2022]

(4.5) **Examples**:

- 1. $\sum_{n=0}^{\infty} \frac{1}{2^n}$ is a convergent, since $r = \frac{1}{2}$ and $\sum_{n=1}^{\infty} \frac{1}{2^n} = 2$.
- 2. $\sum_{n=1}^{\infty} 4^{n-1}$ is a divergent, since r=4.
- 3. $\sum_{n=1}^{\infty} \left(-\frac{1}{6}\right)^{n-1}$ is a convergent, since $r = -\frac{1}{6}$ and $\sum_{n=1}^{\infty} \left(-\frac{1}{6}\right)^{n-1} = \frac{6}{7}$.
- 4. $0.1 + 0.01 + 0.001 + \cdots$ is a convergent, since $0.1 + 0.01 + 0.001 + \cdots = \frac{1}{10} + \frac{1}{10^2} + \frac{1}{10^3} + \cdots = \sum_{n=1}^{\infty} \frac{1}{10^n} = \sum_{n=1}^{\infty} \frac{1}{10} \cdot \frac{1}{10^{n-1}} \Longrightarrow a = \frac{1}{10}, r = \frac{1}{10} \Longrightarrow \sum_{n=1}^{\infty} \frac{1}{10^n} = \frac{1}{9}.$
- 5. The number $0.16666 \dots$ is a convergent, let $0.16 = 0.16666 \dots = 0.1 + 0.06 + 0.006 + 0.0006 + \dots = 0.1 + \sum_{n=1}^{\infty} \frac{6}{10^{n+1}} = \sum_{n=1}^{\infty} \frac{6}{10^n} \cdot \frac{1}{10^{n-1}} \Longrightarrow a = \frac{6}{100}, r = \frac{1}{10} \Longrightarrow 0.16 = 0.1 + \sum_{n=1}^{\infty} \frac{1}{10^{n+1}} = \frac{1}{15}.$
- (4.6) **Theorem**: Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be a convergent infinite series, then
 - 1. $\sum_{n=1}^{\infty} (a_n + b_n)$ is a convergent and $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.
 - 2. $\sum_{n=1}^{\infty} \lambda a_n$ is a convergent $\forall \lambda \in \mathcal{R}$ and $\sum_{n=1}^{\infty} \lambda a_n = \lambda \sum_{n=1}^{\infty} a_n$.

Proof: (1) Let $S_n = \sum_{k=1}^{\infty} a_k$ and $T_n = \sum_{k=1}^{\infty} b_k$, since $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be a convergent infinite series $\Rightarrow \sum_{n=1}^{\infty} a_n = S$, $\sum_{n=1}^{\infty} b_n = T \Rightarrow \{S_n\}$, $\{T_n\}$ be a convergent $\Rightarrow S_n \to S$, $T_n \to T \Rightarrow S_n + T_n \to S + T$, $S_n + T_n = \sum_{n=1}^{\infty} (a_n + b_n) \to S + T \Rightarrow \sum_{n=1}^{\infty} (a_n + b_n) = S + T = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

- (4.7) Corollary: If $\sum_{n=1}^{\infty} a_n$ is a convergent and $\sum_{n=1}^{\infty} b_n$ is a divergent, then
 - 1. $\sum_{n=1}^{\infty} (a_n + b_n)$ is a divergent.
 - 2. $\sum_{n=1}^{\infty} \lambda b_n$ is a divergent $\forall \lambda \neq 0$.

Proof: (1) Suppose that $\sum_{n=1}^{\infty} (a_n + b_n)$ is a convergent, since $\sum_{n=1}^{\infty} a_n$ is a convergent $\Rightarrow -\sum_{n=1}^{\infty} a_n$ is a convergent.

Since $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} (a_n + b_n - a_n)$ is a convergent, but this is a contradiction.

(4.8) Example: $\sum_{n=1}^{\infty} \frac{1}{n}$ and $-\sum_{n=1}^{\infty} \frac{1}{n}$ are a divergent, but $\sum_{n=1}^{\infty} (\frac{1}{n} - \frac{1}{n}) = \sum_{n=1}^{\infty} 0$ is a convergent.