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4. Infinite Series 

Let  {𝑎𝑛} a real sequence and 𝑆1 = 𝑎1, 𝑆2 = 𝑎1 + 𝑎2, 𝑆3 = 𝑎1 + 𝑎2 + 𝑎3, … , 𝑆𝑛 =

𝑎1 + 𝑎2 + ⋯ + 𝑎𝑛. A sequence of partial sums {𝑆𝑛} is called an infinite series and its 

denoted by ∑ 𝑎𝑛
∞
𝑛=1 . We say that 𝑎1, 𝑎2, 𝑎3, … be a terms of infinite series ∑ 𝑎𝑛

∞
𝑛=1  

and called of numbers 𝑆1, 𝑆2, 𝑆3, … be a partial sums of infinite series ∑ 𝑎𝑛
∞
𝑛=1 . 

(4.1) Definition: Let {𝑎𝑛}  be a real sequence and 𝑆𝑛 = ∑ 𝑎𝑘
𝑛
𝑘=1 , we called of {𝑆𝑛} is 

an infinite series and denoted by ∑ 𝑎𝑛
∞
𝑛=1 . 

(4.2) Definition: We say that ∑ 𝑎𝑛
∞
𝑛=1  is a convergent, if {𝑆𝑛} is a converge to 𝑆, this 

means ( lim
𝑛→∞

𝑆𝑛 = 𝑆), 𝑆 is called infinite series sum ∑ 𝑎𝑛
∞
𝑛=1 , this means 𝑆 =

∑ 𝑎𝑛
∞
𝑛=1 . If {𝑆𝑛} is a divergent (i.e. lim

𝑛→∞
𝑆𝑛 does not exist). 

(4.3) Example: Does ∑
1

𝑛(𝑛+1)
∞
𝑛=1  convergent  ?  

𝑎𝑛 =
1

𝑛(𝑛+1)
, 𝑆𝑛 = ∑ 𝑎𝑘

𝑛
𝑘=1 = ∑

1

𝑘(𝑘+1)

𝑛
𝑘=1 = ∑ (

1

𝑘

𝑛
𝑘=1 −

1

𝑘+1
) = 1 −

1

𝑛+1
⟹ 𝑆𝑛 ⟶

1 ⟹ ∑
1

𝑛(𝑛+1)
∞
𝑛=1 = 1 and then ∑

1

𝑛(𝑛+1)
∞
𝑛=1  is a convergent. 

(4.4) Theorem: (some special infinite series) 

1. ∑ 𝑎𝑟𝑛−1∞
𝑛=1 ∋ 𝑎 ≠ 0, 𝑟 ≠ 0 is called geometric series and 𝑟 is a basis of series. 

∑ 𝑎𝑟𝑛−1∞
𝑛=1  is a convergent, if |𝑟| < 1, 𝑆 =

𝑎

1−𝑟
 and otherwise its be a 

divergent. 

2. ∑
1

𝑛
∞
𝑛=1  is called a harmonic series and it’s a divergent. 

Proof: (1) if 𝑟 = 1 ⟹ 𝑆𝑛 = 𝑎 + 𝑎 + ⋯ + 𝑎 = 𝑛𝑎 ⟹ {𝑛𝑎} does not convergent, if 

it’s a convergent, so it’s a bounded, this means ∃ 𝑀 ∈ ℛ+ ∋ |𝑛𝑎| ≤ 𝑀 ∀𝑛 ∈ ℤ+ ⟹

𝑛|𝑎| ≤ 𝑀 ⟹ 𝑛 ≤
𝑀

|𝑎|
 ∀𝑛 ∈ ℤ+, but this a contradiction (Archimedes property) ⟹

∑ 𝑎𝑟𝑛−1∞
𝑛=1  is a divergent. 

(2) 𝑎𝑛 =
1

𝑛
, 𝑆𝑛 = ∑

1

𝑘

𝑛
𝑘=1 = 1 +

1

2
+

1

3
+ ⋯ +

1

𝑛
, 𝑆2𝑛 = ∑

1

𝑘

2𝑛
𝑘=1 = 1 +

1

2
+

1

3
+ ⋯ +

1

𝑛
+

1

𝑛+1
+ ⋯ +

1

2𝑛
⟹ 𝑆2𝑛 − 𝑆𝑛 ≥

1

2
 ∀𝑛 ∈ ℤ+, i.e. if 𝑚 = 2𝑛, 𝑛 ≥ 1 ⟹ |𝑆𝑚 − 𝑆𝑛| ≥

1

2
∀𝑛, 𝑚 ∈ ℤ+ ⟹ {𝑆𝑛} does not Cauchy sequence ⟹ {𝑆𝑛} does not convergent ⟹

∑
1

𝑛
∞
𝑛=1  is a divergent. 
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(4.5) Examples: 

1. ∑
1

2𝑛
∞
𝑛=0  is a convergent, since 𝑟 =

1

2
 and ∑

1

2𝑛
= 2∞

𝑛=1 . 

2. ∑ 4𝑛−1∞
𝑛=1  is a divergent, since 𝑟 = 4. 

3. ∑ (−
1

6
)𝑛−1∞

𝑛=1  is a convergent, since 𝑟 = −
1

6
 and ∑ (−

1

6
)𝑛−1∞

𝑛=1 =
6

7
 . 

4. 0.1 + 0.01 + 0.001 + ⋯ is a convergent, since 0.1 + 0.01 + 0.001 + ⋯ =
1

10
+

1

102
+

1

103
+ ⋯ = ∑

1

10𝑛
= ∑

1

10
.

1

10𝑛−1
∞
𝑛=1

∞
𝑛=1 ⟹ 𝑎 =

1

10
, 𝑟 =

1

10
⟹

∑
1

10𝑛
=

1

9
∞
𝑛=1  . 

5. The number 0.16666 … is a convergent, let  0.16 = 0.16666 … = 0.1 +

0.06 + 0.006 + 0.0006 + ⋯ = 0.1 + ∑
6

10𝑛+1
= ∑

6

100
.

1

10𝑛−1
∞
𝑛=1

∞
𝑛=1 ⟹ 𝑎 =

6

100
, 𝑟 =

1

10
⟹ 0.16 = 0.1 + ∑

1

10𝑛+1
=

1

15
∞
𝑛=1  . 

(4.6) Theorem: Let ∑ 𝑎𝑛
∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  be a convergent infinite series, then  

1. ∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=1  is a convergent and ∑ (𝑎𝑛 + 𝑏𝑛)∞

𝑛=1 = ∑ 𝑎𝑛
∞
𝑛=1 + ∑ 𝑏𝑛

∞
𝑛=1 . 

2. ∑ 𝜆𝑎𝑛
∞
𝑛=1  is a convergent ∀𝜆 ∈ ℛ and ∑ 𝜆𝑎𝑛

∞
𝑛=1 = 𝜆 ∑ 𝑎𝑛

∞
𝑛=1 . 

Proof: (1)  Let 𝑆𝑛 = ∑ 𝑎𝑘
∞
𝑘=1  and  𝑇𝑛 = ∑ 𝑏𝑘

∞
𝑘=1 , since ∑ 𝑎𝑛

∞
𝑛=1  and ∑ 𝑏𝑛

∞
𝑛=1  be a 

convergent infinite series ⟹ ∑ 𝑎𝑛
∞
𝑛=1 = 𝑆, ∑ 𝑏𝑛

∞
𝑛=1 = 𝑇 ⟹ {𝑆𝑛}, {𝑇𝑛} be a 

convergent ⟹ 𝑆𝑛 → 𝑆, 𝑇𝑛 → 𝑇 ⟹ 𝑆𝑛 + 𝑇𝑛 → 𝑆 + 𝑇, 𝑆𝑛 + 𝑇𝑛 = ∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=1 →

𝑆 + 𝑇 ⟹ ∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=1 = 𝑆 + 𝑇 = ∑ 𝑎𝑛

∞
𝑛=1 + ∑ 𝑏𝑛

∞
𝑛=1  . 

(4.7) Corollary: If ∑ 𝑎𝑛
∞
𝑛=1  is a convergent and ∑ 𝑏𝑛

∞
𝑛=1  is a divergent, then 

1. ∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=1  is a divergent. 

2. ∑ 𝜆𝑏𝑛
∞
𝑛=1  is a divergent ∀𝜆 ≠ 0. 

Proof: (1)  Suppose that ∑ (𝑎𝑛 + 𝑏𝑛)∞
𝑛=1  is a convergent, since ∑ 𝑎𝑛

∞
𝑛=1  is a 

convergent ⟹  − ∑ 𝑎𝑛
∞
𝑛=1  is a convergent. 

Since ∑ 𝑏𝑛
∞
𝑛=1 = ∑ (𝑎𝑛 + 𝑏𝑛 − 𝑎𝑛)∞

𝑛=1  is a convergent, but this is a contradiction.  

(4.8) Example: ∑
1

𝑛
∞
𝑛=1  and − ∑

1

𝑛
∞
𝑛=1    are a divergent, but ∑ (

1

𝑛
∞
𝑛=1 −

1

𝑛
) = ∑ 0∞

𝑛=1  is a 

convergent. 

 

 


