2. Irrational and Real numbers

Let \mathbb{Q}^c be a complement set of \mathbb{Q} in real number \mathcal{R} . $\mathbb{Q}^c = \mathcal{R} \setminus \mathbb{Q} = \{x \in \mathcal{R} : x \notin \mathbb{Q}\},$ \mathbb{Q}^c is called the set of irrational numbers, since $\mathbb{Q}^c \neq \mathbb{Q} \Rightarrow \sqrt{2} \in \mathbb{Q}^c$.

(2.1)**Theorem:** Let $x \in \mathbb{Q}$ and $y \in \mathbb{Q}^c$, then

- $(1)x + y \in \mathbb{Q}^c$.
- $(2)xy \in \mathbb{Q}^c$, with $x \neq 0$.

<u>Proof:</u>(1) Assume that $x + y \notin \mathbb{Q}^c$, since $x + y \in \mathbb{R} \Rightarrow x + y \in \mathbb{Q}$, since $x \in \mathbb{Q}$ and \mathbb{Q} is a field $\Rightarrow -x \in \mathbb{Q}$, also $(x + y) + (-x) \in \mathbb{Q} \Rightarrow y \in \mathbb{Q}$, but this is a contradiction.

2)Let
$$xy \notin \mathbb{Q}^c \Rightarrow xy \in \mathbb{Q}$$
, since \mathbb{Q} is a field and $x \in \mathbb{Q}$, $x \neq 0 \Rightarrow \frac{1}{x} = x^{-1} \in \mathbb{Q}$, also $\frac{1}{x}(xy) \in \mathbb{Q} \Rightarrow y \in \mathbb{Q}$, but this is a contradiction.

(2.2) **Theorem:** (Density of irrational numbers)

Let $a, b \in \mathcal{R} \ni a < b \exists s \in \mathbb{Q}^c \ni a < s < b \Longrightarrow \exists$ an infinity irrational numbers between any two real numbers.

Proof: Since $a < b \Rightarrow a - \sqrt{2} < b - \sqrt{2}$, since $a - \sqrt{2}$ and $b - \sqrt{2}$ are real numbers \Rightarrow by using density of rational numbers $\Rightarrow \exists r \in \mathbb{Q} \ni a - \sqrt{2} < r < b - \sqrt{2} \Rightarrow a < r + \sqrt{2} < b \Rightarrow$ since $r \in \mathbb{Q}$ and $\sqrt{2} \in \mathbb{Q}^c \Rightarrow s = r + \sqrt{2} \in \mathbb{Q}^c \Rightarrow a < s < b$. Now, since $a < s \Rightarrow \exists s_1 \in \mathbb{Q} \ni a < s_1 < s$, by continuing this operation, we get on an infinite number of irrational numbers located between a, b.

(2.3) **Definition**: Let $a, b \in \mathcal{R} \ni a < b$, then

$$(a,b) = \{x \in \mathcal{R}: a < x < b\}$$

$$[a, b] = \{x \in \mathcal{R}: a \le x \le b\}$$

$$(a, b] = \{x \in \mathcal{R}: a < x \le b\}$$

$$[a,b) = \{x \in \mathcal{R} : a \le x < b\}$$

$$(-\infty, b) = \{ x \in \mathcal{R} : -\infty < x < b \}$$

$$(-\infty, b] = \{ x \in \mathcal{R}: -\infty < x \le b \}$$

$$(a, \infty) = \{ x \in \mathcal{R} : a < x \le \infty \}$$

$$[a, \infty) = \{x \in \mathcal{R} : a \le x < \infty\}.$$

- (2.4) **Note:** According to density of rational and irrational numbers, we can say that every interval of real numbers contains an infinite number of rational and irrational.
- (2.5) **<u>Definition</u>**: (**Absolute Value**) Let x be a real number, absolute value of x is denoted by |x| and defined as:

$$|x| = \begin{cases} x, x \ge 0 \\ -x, x < 0 \end{cases}$$

(2.6) **Theorem:** (Properties of Absolute Value)

- 1. $|x| = \max\{-x, x\} \forall x \in \mathcal{R} \Longrightarrow |x| \ge -x, |x| \ge x$.
- 2. $|x| \ge 0 \ \forall \ x \in \mathcal{R}$.
- 3. |x| = 0 iff x = 0.
- 4. $|x| = |-x| \forall x \in \mathcal{R}$.
- 5. $|x y| = |y x| \forall x, y \in \mathcal{R}$.
- 6. $|xy| = |x||y| \forall x, y \in \mathcal{R}$.
- 7. $\left|\frac{x}{y}\right| = \frac{|x|}{|y|} \quad \forall \ x, y \in \mathcal{R}, y \neq 0.$
- 8. $|x + y| \le |x| + |y| \forall x, y \in \mathcal{R}$.
- 9. $|x-y| \le |x| + |y| \ \forall \ x, y \in \mathcal{R}$.
- $10. ||x| |y|| \le |x y| \forall x, y \in \mathcal{R}.$
- $11.|x| \le a \text{ iff } -a \le x \le a.$

Some Important Inequalities

(2.7)**<u>Theorem</u>**:

1. Cauchy-schwars Inequality.

If
$$p, q \in \mathcal{R} \ni \frac{1}{p} + \frac{1}{q} = 1 \Longrightarrow \sum_{i=1} |x_i y_i| \le (\sum_{i=1} |x_i|^p)^{\frac{1}{p}} (\sum_{i=1} |y_i|^p)^{\frac{1}{p}} \ni x_i, y_i \in \mathcal{R}$$
. In particular, if $p = 2 \Longrightarrow q = 2$ and $\sum_{i=1} |x_i y_i| \le (\sum_{i=1} |x_i|^2)^{\frac{1}{2}} (\sum_{i=1} |y_i|^2)^{\frac{1}{2}}$.

2. Minkokowsks Inequality.

If
$$p \ge 1 \Longrightarrow (\sum_{i=1}^n |x_i + y_i|^p)^{1/p} \le (\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}} + (\sum_{i=1}^n |y_i|^p)^{\frac{1}{p}} \ni x_i, y_i \in \mathcal{R}.$$

Countable Sets.

(2.8) **<u>Definition</u>**: Let A, B be a sets. We say that A is an equivalent to B and written by $A \sim B$, if there is a bijective function from A into B and written $A \nsim B$, if A is an inequivalent to B.

(2.9)**Theorem**:

1. If
$$E = \{2,4,6,...\}$$
, then $\mathbb{N} \sim E$.

 $(f: \mathbb{N} \to E \text{ defined by } f(n) = 2n \ \forall \ n \in \mathbb{N})$

2. If
$$O = \{1,3,5,...\}$$
, then $\mathbb{N} \sim O$.

$$(f: \mathbb{N} \to 0 \text{ defined by } f(n) = 2n - 1 \ \forall \ n \in \mathbb{N})$$

3. If
$$\mathbb{N}^* = \{0,1,2,3,...\}$$
, then $\mathbb{N} \sim \mathbb{N}^*$.

 $(f: \mathbb{N} \to \mathbb{N}^* \text{ defined by } f(n) = n - 1 \ \forall \ n \in \mathbb{N})$

4.
$$\mathbb{Z} \sim \mathbb{N}^*$$
. $(f: \mathbb{Z} \to \mathbb{N}^* \text{ defined by } f(x) = \begin{cases} -2x & \text{if } x \leq 0 \\ 2x - 1, x > 0 \end{cases}$

5. N~ℚ.

We deduce that E, O, \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} are equivalent.

6. If
$$A = [0,1]$$
, $I_1 = (a,b)$, $I_2 = (a,b]$, $I_3 = [a,b)$, $I_4 = [a,b]$ then $A \sim I_i \forall i = 1,2,3,4$.

$$(f: A \longrightarrow I_i \text{ defined by } f(x) = a + (b - a)x \ \forall \ x \in A)$$

7. If
$$A = (-1,1)$$
 and $B = (a, b)$, then $A \sim B$.

$$(f: A \longrightarrow B \text{ defined by } f(x) = \frac{1}{2}(b-a)x + \frac{1}{2}(b+a) \ \forall \ x \in A)$$

8. If
$$A = (0,1)$$
 then $A \sim \mathcal{R}^+$.

$$(f: A \longrightarrow \mathcal{R}^+ \text{ defined by } f(x) = \frac{x}{1-x} \forall x \in A)$$

9. If
$$A = (-1,1)$$
 then $A \sim \mathcal{R}$.

$$(f: A \longrightarrow \mathcal{R} \text{ defined by } f(x) = \sin x \ \forall \ x \in A)$$

10. If
$$A = (\frac{-\pi}{2}, \frac{\pi}{2})$$
 then $A \sim \mathcal{R}$.

$$(f: A \longrightarrow \mathcal{R} \text{ defined by } f(x) = \tan x \ \forall \ x \in A)$$

- 11. If A = (0,1) then $A \sim \mathcal{R}$.
- 12. For all $k \in \mathbb{N}$ put $\mathbb{N}_k = \{1,2,3,...,k\}$ then
- a. $\mathbb{N}_k \nsim \mathbb{N}$.
- b. $\mathbb{N}_k \sim \mathbb{N}_1$ iff k = 1.
 - 13. $P(X) \not\sim X \forall \text{ set } X$.
- (2.10) **<u>Definition</u>**: Let A be a set. We say that A is a finite set, if A is a non-empty set or equivalent to \mathbb{N}_k for some $k \in \mathbb{N}$. We say that A is an infinite set, if A does not finite set.
- (2.11) **<u>Definition</u>**: If A is a finite set, then $A \sim \mathbb{N}_k$ for some $k \in \mathbb{N}$ and then there is a bijective function $f: \mathbb{N}_k \longrightarrow A$, put $f(i) = a_i \ \forall i \in \mathbb{N}_k \Longrightarrow a_i \in A \ \forall i = 1,2,3,...,k$ and then $A = \{a_1, a_2, ..., a_k\}$.

(2.12)**Theorem**:

- 1. Let A, B be a non-empty sets such that $A \sim B$ then
- a. A is a finite iff B is a finite.
- b. A is an infinite iff B is an infinite.
- 2. For all finite set inequivalent to proper subset.
- 3. Every subset of finite set be a finite.
- 4. If A is an infinite set and $A \subset B$ then B is an infinite set.
- 5. If A is an infinite set and B is a set then $A \cup B$ is an infinite.
- (2.13) **<u>Definition</u>**: Let A is a set. We say that A be a countable set, if A be a finite or equivalent to \mathbb{N} . We say that A be an infinite and countable, if A be an infinite and equivalent to \mathbb{N} . We say that A be an uncountable, if A be an infinite and inequivalent to \mathbb{N} .

(2.14)**Theorem**:

- 1. Every finite set is a countable.
- 2. Each of O, E, \mathbb{N} , \mathbb{N}^* , \mathbb{Z} , \mathbb{Q} be an infinite and countable set.
- 3. Each of \mathcal{R} and an intervals of \mathcal{R} are an uncountable sets.
- (2.15) Note: If A be an infinite countable set, then $\mathbb{N} \sim A$ and then there is a bijective function $f: \mathbb{N} \to A$, put $f(n) = a_n \, \forall n \in \mathbb{N}$ and then $A = \{a_n : n \in \mathbb{N}\} = \{a_1, a_2, a_3, \dots\}$.

(2.16)**Theorem**:

- 1. Every countable infinite set be an equivalent to a proper subset.
- 2. Every infinite set contains a countable infinite subset.
- 3. The set $\mathbb{N} \times \mathbb{N}$ be a countable.
- 4. If *A*, *B* are a countable sets, then
- a. $A \cup B$ be a countable.
- b. $A \times B$ be a countable.