

10: The behaviour of real gas is ideal when the value of Z is equal to

Answer:

a) Vm < Vom

b) V_m > V^O_m

c) Vm = Vom

d) Vm ≠ Vo

Q2: The following data have been observed for 800 mg of nitrogen gas at 273 K. Calculate the best value of the

molar mass of N₂. p/10⁵ Pa 0.750 0.500 0.200 (25 points) V/dm³ 3.0 4.5 7.0

Q3: A perfect gas undergoes isothermal compression, which reduces its volume by 1.80 dm³. The p_f and V_f of the gas are 2×10^2 kPa and 2.14 dm³, respectively. Calculate the p_{original} of the gas in (i) bar, (ii) torr. (25 points)

West_10/11/2021

Best wishes

Dr Abduljabbar I. R. Rushdi

MN2 = 2x M-80 mg x 800 > m=808 T=273K M= 10 28 g /ma (V pv = nRT 0.75x36= N x0-088x 27 $n = 0.75 \times 3.0$ n = 225 0.982×273 0.22.3200 X 4.5 5 1 X 0.09 8 X 2 23? N = 0.500 X 4-5 22 5 (n=10) M = 0.8? n= 0-900 x 7.02 1.4 n=0-06 m=133 V152-14 8m3 > 2-14 dm3 x1032 => 2 44 x 10 } P2 = 2 ×102 Kpa > 2 ×10 KPa = 2×10 Ra = 2 Pax V251-80dm3 => (1-80dm3/102) 1.80×103L V=12-14=1-8 $P_1 = 2.14 \times 10^3 = 2 \times 0.34 \times 10^3 \text{ V}_1 = 0.534$ P. V. = P2 12 P1= 0.68×103103 0.46pa = 0.116pa 760for P=0.46 Pa