Physical Chemistry_Chpt_One_Properties of Gases Name of a student Sama Jawacl Kha Signature 1st Semester-2021 University of Mustansiriyah 1st Exam-paper Department of Chemistry (50 points) Q1: Circle the right answer for all of the following: 1: According to van der Waal's corrections if V_{Real} < V_{Perfect} of any gas that means the gas has: a) non-polar particles b) polar particles c) small particles d) big particles Answer: 2: Calculate the weight of CO₂ gas (44 g.mol⁻¹) in a 0.5 × 10⁴ mL cylinder at 20 x 10² kPa and 25 °C c) 180 mol d) 180 kg a) 180 g mol-1 b) 180 g 3: Calculate the density of CO₂ placed in a 22.4 \times 10³ mL cylinder at 20 \times 10² kPa and 298 K. d) 36.06 L-1 c) 36.06 g a) 36.06 kg L⁻¹ b) 36.06 g L⁻¹ Answer: 4: According to Graham's law the heaviest gas has? c) middle rate d) low density Answer: a) low rate b) high rate 5: A gas occupies 20 dm³ at 90 °C and 760 torr pressure. What would be its volume at STP? c) 15.04 L-1 b) 15.04 dm³ a) 15.04 mL 6: A vessel contains a certain amount of gas at 80 × 10⁵ Pa. The gas is transferred to another tank 20 dm³ with pressure of 20 × 103 Pa. What should be its volume? V ?? John c) 0.5 Pa dm3 a) 0.5 L b) 0.5 Pa L Answer: 7: According to Avogadro's law n is directly proportional with volume at constant? c) T & V e) R & P d) p & n a) p & V Answer: 8: Attractive and repulsive forces between particles are present in a? Answer: a) perfect gas b) non-ideal gas c) ideal gas d) noble gas 9: It can follow the direct proportional between temperature and volume through the law of Answer: a) Van der Waal b) Graham c) Charles the Gay-tussac 10: The mol fraction of atmospheric pressure is equal to? Answer: a) zero b) one c) two d) three (25 points) Q2: The following data have been observed for 10000 mg of CO2 gas at 273 K. Calculate the best value of the molar mass of CO₂. p/10² kPa 1.00 2.00 3.00 V/L 4.00 7.50 11.75 Q3: A perfect gas undergoes isothermal expansion, which increases its volume by 2.48 dm³. The p_i and V_i of the gas are 2 × 10² kPa and 2.14 dm³, respectively. Calculate the p_f of the gas in (i) bar, (ii) torr. (25 points) THE 10/11/2021 **Best wishes** Dr Abduljabbar I. R. Rushdi NO ANSWER Pi= 2x102KAt Vi=2x102KAt P.V. = PeVe 2×10 ×2.14 - P 2.48 4.28×10 - Pe 2.48 Pe = 4.29×102 Pe: 102 Kpa