| | tudent | Signature - | TO THE | No3 | | |--|---|---|---------------------------------|--------------------------------------|--| | Univers | ity of Mustansiriyah | | | 1st Semester-2021 | | | Department of Chemistry | | | | 1 st Exam-paper F | | | Q1: Circle th | e right answer for all of the follo | owing: | | (50 points) | | | 1: According | to van der Waal's corrections is | V _{Real} < V _{Perfect} of any gas | s that means the g | as has: | | | Answer: 2: Calculate Answer: | the weight of CO ₂ gas (44 g mol- | b) polar particles c)
1) in a 0.5×10^4 mL cylind
180 mol d) 180 kg | ler at 20 x 10 ² kPa | d) big particles and 25 °C. | | | 3: Calculate Answer: | the density of CO ₂ placed in a 22
a) 36.06 kg L ⁻¹ b) 36.06 | | | 3 K. | | | 4: According
Answer: | to Graham's law the heaviest ga
a) low rate
b) high rate | c) middle rate | d) low densit | (() | | | 5: A gas occu
Answer: | upies 20 dm ³ at 90 °C and 760 to
a) 15.04 mL b) 15.04 | rr pressure. What would dm ³ 5/5 c) 15.04 L | | | | | | contains a certain amount of ga
of 20 × 10 ⁵ Pa. What should be j | | s is transferred to | another tank 20 dm ³ with | | | Answer: | a) 0.5 L b) 0.5 Pa L | c) 0.5 Pa dm ³ | d) 0.5 L ⁻¹ | | | | 7: According | g to Avogadro's law n is directly p | proportional with volume | e at constant? | | | | Answer: | a) p & V b) T & p | c) T & V |) p & n | e) R & P | | | Later and the la | and repulsive forces between p | articles are present in a? | | | | | 8: Attractive | a) perfect gas b) non- | | ideal gas | d) noble gas | | | | | | | | | | Answer: | ow the direct proportional between | een temperature and vol | lume through the l | aw of | | Answer: b) one c) two d) three Q2: The following data have been observed for 10000 mg of CO2 gas at 273 K. Calculate the best value of the molar mass of CO₂. p/10² kPa 1.00 2.00 3.00 (25 points) V/L 4.00 7.50 11.75 Q3: A perfect gas undergoes isothermal expansion, which increases its volume by 2.48 dm³. The p_i and V_i of the gas are 2×10^2 kPa and 2.14 dm³, respectively. Calculate the p_f of the gas in (i) bar, (ii) torr. (25 points) Thur_11/11/2021 **Best wishes** Dr Abduljabbar I. R. Rushdi Physical Chemistry_Chpt_One_Properties of Gas - LOXO.082 X Z X3 X1500 X 100 _ 22.386 D. Z U 62 9/mo 8 mol) made was a coo o Q3/