| Pa | 24-11-21 100 | |---|------------------------------------| | Physical Chemistry Chat One Branatio | | | Physical Chemistry_Chpt_One_Properties | s of Gases | | Name of a student — (A2)Signature — Levy | No. | | University of Mustansiriyah | 1st Semester-2021 | | Department of Chemistry | 1 st Exam-paper D | | Q1: Circle the right answer for all of the following: | (50 points) | | 1: According to van der Waal's corrections if V _{Real} < V _{Perfect} of any gas that means the gas has: | | | Answer: a) non-polar particles b) polar particles c) small p | | | 2: Calculate the weight of CO_2 gas (44 g.mol ⁻¹) in a 0.5×10^4 mL cylinder at 20 Answer: a) 180 g mol ⁻¹ b) 180 g c) 180 mol d) 180 kg | 0 x 10 ² kPa and 25 °C. | | 3: Calculate the density of CO_2 placed in a 22.4 × 10 ³ mL cylinder at 20 × 10 ² kPa and 298 K. | | | Answer: a) 36.06 kg L ⁻¹ b) 36.06 g L ⁻¹ c) 36.06 g | d) 36.06 L-1 | | 4: According to Graham's law the heaviest gas has? Answer: a) low rate b) high rate c) middle rate d) low density | | | 5: A gas occupies 20 dm ³ at 90 °C and 760 torr pressure. What would be its volume at STP? | | | Answer: a) 15.04 mL b) 15.04 dm ³ 5 15.04 L ⁻¹ d) 15.04 dm ⁻³ | | | 6: A vessel contains a certain amount of gas at 80×10^5 Pa. The gas is transferred to another tank 20 dm ³ with pressure of 20×10^9 Pa. What should be its volume? | | | Answer: a) 0.5 L b) 0.5 Pa L c) 0.5 Pa dm ³ d) 0.5 L ⁻¹ | | | 7: According to Avogadro's law n is directly proportional with volume at constant? | | | Answer: (a) p & V b) T & p c) T & V d) p & n | e) R & P | | 8: Attractive and repulsive forces between particles are present in a? | | | Answer: a) perfect gas b) non-ideal gas c) ideal ga | | | 9: It can follow the direct proportional between temperature and volume through the law of | | | Answer: a) Van der Waal b) Graham c) Charles | d) Gay-Lussac | | 10: The mol fraction of atmospheric pressure is equal to? | | Answer: a) zero b) one c) two d) three Q2: The following data have been observed for 10000 mg of CO2 gas at 273 K. Calculate the best value of the molar mass of CO2. p/10² kPa 1.00 2.00 3.00 (25 points) V/L 4.00 7.50 11.75 Q3: A perfect gas undergoes isothermal expansion, which increases its volume by 2.48 dm 3 . The p_i and V_i of the gas are 2 \times 10² kPa and 2.14 dm³, respectively. Calculate the p_f of the gas in (i) bar, (ii) torr. (25 points) Wed_10/11/2021 Best wishes Dr Abduljabbar I. R. Rushdi $$Q \frac{1}{2} | Sol = M_{02} = | lood mg | T = 273 k$$ $= 10 \times 10^{6} \frac{9}{4}$ $P = 1 \text{ lefa}$ 1$