Theorem 14.8 (Fermat). (i) If $x \in \mathbb{N}$, $p \in \mathbb{N}$ is prime and $x \not\equiv 0 \pmod{p}$ (i.e. $p \not\mid x$), then $x^{p-1} \equiv 1 \pmod{p}$.

(ii) If x ∈ N and p ∈ N is prime, then x^p ≡ x (mod p).

Proof (i) It is easy to see that

$$x \not\equiv 0 \pmod{p} \Leftrightarrow (x, p) = 1.$$

Since $\varphi(p) = p - 1$, Theorem 14.5 gives that $x^{p-1} \equiv 1 \pmod{p}$.

(ii) If $x \not\equiv 0 \pmod{p}$, then (i) gives that $x^{p-1} \equiv 1 \pmod{p}$ and hence

$$x^p = x \cdot x^{p-1} \equiv x \cdot 1 \pmod{p} \equiv x \pmod{p}$$
.

If $x \equiv 0 \pmod{p}$, then

$$x^p \equiv 0^p \pmod{p} \equiv 0 \pmod{p}.$$

Example 14.9. Consider p = 7. We have that

$$\begin{array}{ll} 2^1 = 2, & 2^2 = 4, & 2^3 = 8 \equiv 1 \; (\bmod \; 7) \,, & 2^4 \equiv 2 \; (\bmod \; 7) \,, & 2^5 \equiv 4 \; (\bmod \; 7) \,, \\ 2^6 \equiv 8 \; (\bmod \; 7) \equiv 1 \; (\bmod \; 7) \,; & \end{array}$$

and

$$3^1 = 3$$
, $3^2 = 9 \equiv 2 \pmod{7}$, $3^3 \equiv 6 \pmod{7}$, $3^4 \equiv 18 \pmod{7} \equiv 4 \pmod{7}$, $3^5 \equiv 12 \pmod{7} \equiv 5 \pmod{7}$, $3^6 \equiv 15 \pmod{7} \equiv 1 \pmod{7}$.

Suppose we wish to show that $21 \mid 3^{91} - 3$. Then it is sufficient to show that $7 \mid 3^{90} - 1$. Moreover, since $3^6 \equiv 1 \pmod{7}$,

$$3^{90} = 3^{6 \cdot 15} = \left(3^6\right)^{15} \equiv 1^{15} \, (\mathrm{mod} \ 7) \equiv 1 \, (\mathrm{mod} \ 7) \, .$$

Definition 14.10. Let $x, n \in \mathbb{N}$ satisfy (x, n) = 1. Then the order, period or exponent of $x \pmod{n}$ is the smallest natural number $r \in \mathbb{N}$ such that $x^r \equiv 1 \pmod{n}$.

Note 14.11. The condition that (x, n) = 1 is necessary for the last definition. Indeed, suppose that (x, n) = d > 1. Then, since $d \mid x, d \mid x^r$ for all $r \in \mathbb{N}$.

Furthermore, since $d \mid n$, $d \mid kn$ for all $k \in \mathbb{Z}$. Hence $d \mid x^r - kn$ for all $r \in \mathbb{N}$ and $k \in \mathbb{Z}$. Hence for each pair $(r, k) \in \mathbb{N} \times \mathbb{Z}$, there exists $l(r, k) \in \mathbb{Z}$ such that $x^r - kn = l(r, k)d$.

Suppose that $r \in \mathbb{N}$ satisfies $x^r \equiv 1 \pmod{n}$. Then $n \mid x^r - 1$. Pick $k \in \mathbb{Z}$ such that $x^r - 1 = kn$. Then $x^r - kn = 1$, and hence l(r, k) d = 1. Since d > 1 and $l(r, k) \in \mathbb{Z}$, this is impossible.