giving that

$$24^2 \equiv -24 \pmod{100}$$
.

Hence

$$24^4 \equiv (-24)^2 \pmod{100} \equiv 24^2 \pmod{100} \equiv -24 \pmod{100}$$
.

Similarly,

$$24^8 \equiv -24 \pmod{100}$$
, $24^{16} \equiv -24 \pmod{100}$, $24^{32} \equiv -24 \pmod{100}$.

Since $2^{20} \equiv -24 \pmod{100}$, it follows that

$$\begin{split} 2^{1000} &\equiv 2^{20\cdot 50} \, (\mathrm{mod} \ 100) \equiv (-24)^{50} \, (\mathrm{mod} \ 100) \equiv 24^{50} \, (\mathrm{mod} \ 100) \\ &\equiv 24^{32} \cdot 24^{16} \cdot 24^2 \, (\mathrm{mod} \ 100) \equiv -24 \cdot -24 \cdot -24 \, (\mathrm{mod} \ 100) \\ &\equiv -24 \, \big(24^2\big) \, (\mathrm{mod} \ 100) \equiv -24 \cdot -24 \, (\mathrm{mod} \ 100) \equiv 24^2 \, (\mathrm{mod} \ 100) \\ &\equiv -24 \, (\mathrm{mod} \ 100) \equiv 76 \, (\mathrm{mod} \ 100) \, . \end{split}$$

(2) Suppose we wish to prove that 97 | 2⁴⁸ - 1.

This is equivalent to showing that $2^{48} \equiv 1 \pmod{97}$. Indeed, we have that

$$2^6 = 64 \equiv -33 \pmod{97}$$
,
 $\Rightarrow 2^{12} \equiv (-33)^2 \pmod{97} \equiv 33^2 \pmod{97} \equiv 9 \cdot 121 \pmod{97} \equiv 9 \cdot 24 \pmod{97}$
 $\equiv 108 \cdot 2 \pmod{97} \equiv 11 \cdot 2 \pmod{97} \equiv 22 \pmod{97}$,
 $\Rightarrow 2^{24} \equiv 22^2 \pmod{97} \equiv 4 \cdot 121 \pmod{97} \equiv 4 \cdot 24 \pmod{97} \equiv 96 \pmod{97}$
 $\equiv -1 \pmod{97}$,
 $\Rightarrow 2^{48} \equiv (-1)^2 \pmod{97} \equiv 1 \pmod{97}$.

Theorem 12.13. Let $x, y \in \mathbb{Z}$ and $\lambda, n, n_1, n_2, \dots, n_r \in \mathbb{N}$. We have that

- λx ≡ λy (mod n) ⇔ x ≡ y (mod n/d), where d = (λ, n);
- (ii) if $\lambda x \equiv \lambda y \pmod{n}$ and $(\lambda, n) = 1$, then $x \equiv y \pmod{n}$;
- (iii) $x \equiv y \pmod{n_i} \quad \forall i \in \{1, 2, ..., r\} \Leftrightarrow x \equiv y \pmod{[n_1, n_2, ..., n_r]}$.

Proof (i) Suppose that $\lambda x \equiv \lambda y \pmod{n}$. Then $n \mid \lambda x - \lambda y$, and hence $\exists k \in \mathbb{Z}$ such that $\lambda x - \lambda y = kn$. It follows that $\frac{\lambda}{d}(x - y) = k\frac{n}{d}$. Hence $\frac{n}{d} \mid \frac{\lambda}{d}(x - y)$.

Furthermore $(\lambda, n) = d$, and hence Corollary 10.10 gives that $(\frac{\lambda}{d}, \frac{n}{d}) = 1$. It follows from Corollary 10.12 that $\frac{n}{d} | x - y$. Hence $x \equiv y \pmod{\frac{n}{d}}$.

Conversely, suppose that $x \equiv y \pmod{\frac{n}{d}}$. Then $\frac{n}{d} \mid x - y$, and hence $\exists k \in \mathbb{Z}$ such that $x - y = k \frac{n}{d}$. Hence $\lambda x - \lambda y = \left(k \frac{\lambda}{d}\right) n$. It follows that $\lambda x \equiv \lambda y \pmod{n}$.