(ii) We have that

$$x_1x_2 = (y_1 + k_1n)(y_2 + k_2n) = y_1y_2 + (k_1y_2 + k_2y_1 + k_1k_2n)n.$$

Theorem 12.7. Take $n \in \mathbb{N}$ and let $f(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0$, with

$$a_i \in \mathbb{Z} \, \forall i \in \{0, 1, \ldots, n-1, n\}.$$

If $x \equiv y \pmod{n}$, then $f(x) \equiv f(y) \pmod{n}$.

Proof This follows from repeated application of Lemma 12.6.

Lemma 12.8. Let $x, y, n \in \mathbb{N}$ be such that $x \equiv y \pmod{n}$. Then x and y have the same remainder when divided by n.

Proof Since $x \equiv y \pmod{n}$, we have that $n \mid x - y$ and hence that $\exists k \in \mathbb{Z}$ such that x - y = kn.

Let $q, r \in \overline{\mathbb{N}}$ satisfy $0 \le r < n$ and x = qn + r (the existence and uniqueness of such q, r is given by Lemma 10.5). It follows that

$$y = x - kn = (qn + r) - kn = (q - k)n + r.$$

Since y > 0, it follows that $q - k \ge 0$.

Example 12.9. We have that $81 \equiv 56 \pmod{5}$. Furthermore, both 81 and 56 have remainder 1 when divided by 5:

$$81 = 16 \cdot 5 + 1$$
, $56 = 11 \cdot 5 + 1$.

Definition 12.10. Take $n \in \mathbb{N}$. The integers $a_0, a_1, \ldots, a_{n-1}$ form a complete set of residues (CSR) modulo n if they comprise one element from each equivalence (congruence) class, i.e. if $a_i \not\equiv a_j \pmod{n}$ for $i \neq j$.

Example 12.11. Both 10, -4, 2, -2, -6 and -2, -1, 0, 1, 2 are CSRs modulo 5.

Example 12.12. (1) Suppose that we wish to know the last two digits in the decimal expansion of 2¹⁹⁰⁰.

This means that we need to find $n \in \mathbb{N}$ such that $0 \le n \le 99$ and $2^{1000} \equiv n \pmod{100}$. We have

$$2^5 = 32$$
,
 $\Rightarrow 2^{10} = 32^2 = 1024 \equiv 24 \pmod{100}$,
 $\Rightarrow 2^{20} \equiv 24^2 \pmod{100} \equiv 576 \pmod{100} \equiv -24 \pmod{100}$,