(b) Suppose that x ≠ y.

We argue by contradiction. Indeed, assume that $\overline{x} \cap \overline{y} \neq \emptyset$, and take $t \in \overline{x} \cap \overline{y}$. Since $t \in \overline{x}$, $t \sim x$. Hence $x \sim t$.

Since $t \in \overline{y}$, $t \sim y$. Thus $x \sim t$ and $t \sim y$, giving that $x \sim y$. This is a contradiction.

(c) This follows from (a) and (b).

Notation 12.3. Let S be a set and $R \subset S \times S$ be an equivalence relation. We denote by $S/\sim \text{or } S/R$ the set of all the equivalence classes.

Examples 12.4. (1) Take $S = \{ \text{ students at Sussex } \}$.

We say that $x \sim y$ if x is a student in the same school at y. Then \sim is indeed an equivalence relation. Further, each element of the set S/R is the set of students in a particular school.

(2) Take S = { people on Earth }.

We say that $x \sim y$ if x lives in the same country as y. Then \sim is indeed an equivalence relation. Further, each element of the set S/R is the set of all people living in a particular country.

(3) Take $S = \mathbb{Z}$, and pick $n \in \mathbb{N}$.

We say that $x \sim y$ if $n \mid x - y$.

- (i) Pick $x \in \mathbb{Z}$. Since $n \mid 0$, $n \mid x x$ and hence $x \sim x$.
- (ii) Suppose that $x, y \in \mathbb{Z}$ and that $x \sim y$. Then $n \mid x y$, and hence $\exists k \in \mathbb{Z}$ such that x y = nk. So y x = n(-k), giving that $n \mid y x$ and hence that $y \sim x$.
- (iii) Suppose that x, y, z ∈ Z, and that x ~ y and y ~ z. Then n | x y and n | y z. Hence ∃k, l ∈ Z such that x - y = nk and y - z = nl. Hence

$$x - z = (x - y) + (y - z) = nk + nl = n(k + l)$$
,

giving that $n \mid x - z$, and hence that $x \sim z$.

Instead of using the notation $x \sim y$, from now on we will say that $x \equiv y \pmod{n}$ (i.e. x is congruent to y modulo n) if $n \mid x - y$.