Chapter 12 ## Congruences [Gauss 1777-1855] **Definition 12.1.** Let S be a set and $R \subset S \times S$. We introduce the relation \sim defined by $$x \sim y \iff (x, y) \in R.$$ R is an equivalence relation if - x ~ x ∀x; - (2) x ~ y ⇒ y ~ x; - (3) $x \sim y$, $y \sim z \Rightarrow x \sim z$. The equivalence class of x is defined to be $\overline{x} = \{t \in S : t \sim x\}$. **Lemma 12.2.** Let S be a set and $R \subset S \times S$ be an equivalence relation. - (a) If $x \sim y$, then $\overline{x} = \overline{y}$. - (b) If $x \not\sim y$, then $\overline{x} \cap \overline{y} = \emptyset$. - (c) $S = \bigcap_{x \in S} \overline{x} = disjoint union of equivalence classes.$ **Proof** (a) Suppose that $x \sim y$. Take $t \in \overline{x}$. Then $t \sim x$. Since $x \sim y$, it follows that $t \sim y$. Hence $t \in \overline{y}$. So $\overline{x} \subset \overline{y}$. Take $t \in \overline{y}$. Then $t \sim y$. Since $x \sim y$, $y \sim x$. It follows that $t \sim x$. Hence $t \in \overline{x}$. So $\overline{y} \subset \overline{x}$. Hence $\overline{x} \subset \overline{y}$ and $\overline{y} \subset \overline{x}$. So $\overline{x} = \overline{y}$, as required.