Chapter 12

Congruences [Gauss 1777-1855]

Definition 12.1. Let S be a set and $R \subset S \times S$. We introduce the relation \sim defined by

$$x \sim y \iff (x, y) \in R.$$

R is an equivalence relation if

- x ~ x ∀x;
- (2) x ~ y ⇒ y ~ x;
- (3) $x \sim y$, $y \sim z \Rightarrow x \sim z$.

The equivalence class of x is defined to be $\overline{x} = \{t \in S : t \sim x\}$.

Lemma 12.2. Let S be a set and $R \subset S \times S$ be an equivalence relation.

- (a) If $x \sim y$, then $\overline{x} = \overline{y}$.
- (b) If $x \not\sim y$, then $\overline{x} \cap \overline{y} = \emptyset$.
- (c) $S = \bigcap_{x \in S} \overline{x} = disjoint union of equivalence classes.$

Proof (a) Suppose that $x \sim y$.

Take $t \in \overline{x}$. Then $t \sim x$. Since $x \sim y$, it follows that $t \sim y$. Hence $t \in \overline{y}$. So $\overline{x} \subset \overline{y}$.

Take $t \in \overline{y}$. Then $t \sim y$. Since $x \sim y$, $y \sim x$. It follows that $t \sim x$. Hence $t \in \overline{x}$. So $\overline{y} \subset \overline{x}$.

Hence $\overline{x} \subset \overline{y}$ and $\overline{y} \subset \overline{x}$. So $\overline{x} = \overline{y}$, as required.