Theorem 11.19. If $\zeta(s) = 0$, then s = 1/2 + iy.

Remark 11.20. This is the famous Riemann Hypothesis.

Proof This is not known. There is a \$ 1,000,000 prize for a successful proof (this is one of the seven Clay Millennium Problems). □

We can also use the ζ function to find the probability that two integers, chosen at random, are coprime: the probability that they are both divisible by 2 is $1/2^2$, that they are both divisible by 3 is $1/3^2$ and so on. Therefore the probability that they are not both divisible by $2, 3, 5, \ldots$ is

$$(1-1/2^2)(1-1/3^2)(1-1/5^2)\cdots = 1/\zeta(2) = 6/\pi^2 = 0.6079\ldots$$

Remark 11.21. Fermat's Factorization Method

To see if a given number is actually prime or not, an efficient method of factorisation was found by Fermat. In order to factorise an odd integer n, suppose n=ab. We can write a=x-y, b=x+y with x,y of mixed parity, since a,b are both odd. Then $n=x^2-y^2$, or $x^2-n=y^2$. Choose the smallest p such that $p^2>n$ and consider $p^2-n, (p+1)^2-n, \ldots$ until a perfect square, q^2 is obtained, with $m^2-n=q^2$. Then n=(m-q)(m+q).

until a perfect square, q^2 is obtained, with $m^2 - n = q^2$. Then n = (m - q)(m + q). For example, to factorise $429 : 21^2 - 429 = 12$, $22^2 - 429 = 55$, $23^2 - 429 = 100 = 10^2$. Thus, $429 = (23 - 10)(23 + 10) = 13 \times 33$.