Chapter 11

Prime Numbers

Definition 11.1. The integers can be partitioned in to four types:

- zero: a | 0 for all a ∈ Z;
- (2) units e = ±1: e | a for all a ∈ Z;
- (3) primes p: for any a ∈ Z, if a | p then a = ±p or ±1.
- (4) composites c: ∃a, b ∈ Z which are both neither zero or units such that c = ab.

Remark 11.2. Recall Corollary 10.12: if $a, b \in \mathbb{N}$ and $c \in \mathbb{Z}$ satisfy $a \mid bc$ and (a, b) = 1, then $a \mid c$.

Suppose that p is a prime, b, $c \in \mathbb{Z}$ and $p \mid bc$. Since $(p, b) \mid p$, (p, b) = 1 or p. If (p, b) = p, then $p \mid b$.

If (p, b) = 1, then (since $p \mid bc$) we have that $p \mid c$ by Corollary 10.12. Hence either $p \mid b$ or $p \mid c$ or both.

It follows by an inductive argument that if (a) p is a prime, (b) $a_1, a_2, \ldots, a_r \in \mathbb{Z}$ and (c) $p \mid a_1 a_2 \ldots a_r$ then $p \mid a_i$ for at least one $i \in \{1, 2, \ldots, r\}$.

Theorem 11.3 (Unique Prime Factorization of Natural Numbers). Suppose that $n \in \mathbb{N}$ and n > 1. Then there exist primes $p_1, p_2, \ldots, p_r > 1$, which are unique up to order, such that

$$n = p_1 p_2 \dots p_r$$
.

Proof If n is prime, then taking r = 1 and $p_1 = n$ gives the stated result.

Suppose now that n is composite. Take b, $c \in \mathbb{N}$ such that 1 < b, c < n and n = bc. If b and c are both primes, n = bc is a (not necessarily unique) prime factorization of n. If either b or c is a composite, factorize it once again.

Proceeding inductively yields a finite process which results in a (not necessarily unique) prime factorization

$$n = p_1 p_2 \dots p_r$$