then there exist integers x_{i+1} , $y_{i+1} \in \mathbb{Z}$ such that

$$r_{i+1} = ax_{i+1} + by_{i+1}$$
.

Indeed,

$$r_{i+1} = r_{i-1} - q_{i+1}r_i = (ax_{i-1} + by_{i-1}) - q_{i+1}(ax_i + by_i)$$

= $a(x_{i-1} - q_{i+1}x_i) + b(y_{i-1} - q_{i+1}y_i)$.

Noting that $d = r_{n+1}$ gives the required result.

Example 10.7. Take a = 1225, b = 1155. We have that

$$1225 = 1 \cdot 1155 + 70,$$
 $70 = 1225 - 1155$
 $1155 = 16 \cdot 70 + 35,$ $35 = 1155 - 16 \cdot 70$
 $70 = 3 \cdot 35$ $70 = 1225 - 1155$
 $70 = 1225 - 1155$
 $70 = 1225 - 1155$
 $70 = 1225 - 1155$
 $70 = 1225 - 1155$
 $70 = 1225 - 1155$
 $70 = 1225 - 1155$

Remark 10.8. There are infinitely many pairs $(x, y) \in \mathbb{Z}^2$ satisfying (iii). Indeed, suppose that $x, y \in \mathbb{Z}$ satisfy d = ax + by. Pick $m \in \mathbb{Z}$ and take

$$x' = x - mb$$
, $y' = y + ma$.

Then

$$ax' + by' = a\left(x - mb\right) + b\left(y + ma\right) = ax + by = d.$$

Remarks 10.9. The definition of greatest common divisor can be extended to $a, b \in \mathbb{Z} \setminus \{0\}$:

- The Euclidean Algorithm can be applied to find (|a|, |b|)
- (2) Then the greatest common dividers of a and b are ± (|a|, |b|).

Corollary 10.10. Let $a, b, k \in \mathbb{N}$. Then

$$(ka, kb) = k(a, b).$$

Proof Let d = (a, b). Since $d \mid a$ and $d \mid b$, $kd \mid ka$ and $kd \mid kb$.

Let d' = (ka, kb). Then, since $kd \mid ka$ and $kd \mid kb$, so $kd \mid d'$.

On the other hand, $d' \mid ka$ and $d' \mid kb$. So $d' \mid kd$. Hence $kd \mid d'$ and $d' \mid kd$, giving that d' = kd.