Chapter 10 ## Divisibility Recall that we denote the natural numbers and the integers by \mathbb{N} and \mathbb{Z} respectively: $$\mathbb{N} = \{1, 2, 3, 4, \ldots\},\$$ $$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}.$$ **Definition 10.1.** Suppose that $a, b \in \mathbb{Z}$. If $\exists c \in \mathbb{Z}$ such that a = bc then we say that b divides a, and we write $b \mid a$. (This includes the case b = a.) **Remark 10.2.** If $a, b \in \mathbb{N}$ satisfy $b \mid a$, then $b \leq a$. **Lemma 10.3.** Suppose that $a, b, d, x, y \in \mathbb{Z}$. If $d \mid a$ and $d \mid b$, then $d \mid ax + by$. **Proof** Since $d \mid a$ and $d \mid b$, $\exists l$, $m \in \mathbb{Z}$ such that a = dl and b = dm. Hence $$ax + by = (dl) x + (dm) y = d(lx + my),$$ giving that $d \mid ax + by$. **Definition 10.4.** Let $a, b \in \mathbb{N}$. A greatest common divisor of a, b is an element $d \in \mathbb{N}$ such that - (D1) d | a and d | b; - (D2) if e ∈ N satisfies e | a and e | b, then e | d. In this case we write $d = \gcd(a, b)$, which we abbreviate to d = (a, b) if there is no ambiguity caused by doing so. **Lemma 10.5.** Given $a, b \in \mathbb{N}$ with a > b, \exists unique $q \in \mathbb{N}$ and $r \in \overline{\mathbb{N}}$ with $0 \le r < b$ such that a = qb + r.